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a b s t r a c t

The accurate prediction of the dynamic behaviour of a complex component or system is often

difficult due to uncertainty or scatter on the physical parameters in the underlying numeri-

cal models. Over the past years, several non-deterministic techniques have been developed

to account for these model inaccuracies, supporting an objective assessment of the effect of

these uncertainties on the dynamic behaviour. Still, also these methods require a realistic

quantification of the scatter in the uncertain model properties in order to have any predictive

value. In practice, this information is typically inferred from experiments. This uncertainty

quantification is especially challenging in case only fragmentative or scarce experimental

data are available, as is often the case when using modal data sets. This work therefore stud-

ies the application of these limited data sets for this purpose, and focuses more specifically

on the quantification of interval uncertainty based on limited information on experimentally

obtained eigenfrequencies. The interval approach, which is deemed to be the most robust

against data insufficiency, typically starts from bounding the data using the extreme values in

the limited data set. This intuitive approach, while of course representing the experiments, in

general yields highly unconservative interval estimates, as the extreme realisations are typ-

ically not present in the limited data set. This work introduces a completely new approach

for quantifying the bounds on the dynamic properties under scarce modal data. It is based on

considering a complete set of parametrized probability density functions to determine likeli-

hood functions, which can then be used in a Bayesian framework. To illustrate the practical

applicability of the proposed techniques, the methodology is applied to the well-known DLR

AIRMOD test case where in a first step, the bounds on the experimental eigenfrequencies

are estimated. Then, based on a calibrated finite element model of the structure, bounds on

the frequency response functions are estimated. It is illustrated that the method allows for a

largely objective estimation of conservative interval bounds under scarce data.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Context

The most elementary dataset in the characterisation of the dynamic behaviour of a complex system is the list of resonance

frequencies, usually ranked from low to high, and covering the frequency range of interest which depends on the conditions
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of utilisation of the system. The other traditional modal parameters are the mode shapes, which are much more difficult to

represent and sometimes also the damping values. The importance of each individual eigenfrequency in the overall dynamic

response of the structure is expressed by the modal participation factor, which depends amongst other factors on the nature

of the corresponding mode shape on and the position(s) of the point(s) of excitation. Not only in the structural response do

the eigenfrequencies play a crucial role, also in numerical simulations the list of eigenfrequencies is the primary dataset for

subsequent dynamic analysis of any kind. And when a finite element model needs to be validated, a dynamic analysis provides

much more information than a static analysis, with the set of eigenfrequencies again the key target in the model updating

procedure.

Both in experimental identification and in numerical simulation, traditional procedures for dynamic analysis are determinis-

tic, which implies that every quantity, both on the input and on the output side, are represented by a unique number. Awareness

is growing that non-determinism is an inevitable aspect of physical reality, for many reasons. Conditions of utilisation depend

on time, temperature, humidity, degradation of the structure, …Each individual operator of the system may have a different

user profile. Regardless of quality levels, different realisations of a nominally identical system never behave in exactly the same

way. And also in experimental testing, several repetitions need to be done to identify the system characteristics as realistically

as possible.

The common procedure for the experimental identification of resonance frequencies is a modal test. Even if standard data

acquisition procedures call for a number of averages to be conducted, data analysis for each individual test leads to one set of res-

onance frequencies. Repetition of the test, even on the same realisation or definitely on another sample of a batch of nominally

identical systems, or on a system which has been disassembled and reassembled, invariably produces a different set of resonance

frequencies. The most complete and thus the most reliable information on the system requires a number of repetitions and a

number of eigenfrequency datasets, which are represented by a number of histogrammes on individual eigenfrequencies. Such

a histogramme is by definition a finite sample of a population of physically consistent representations of a non-deterministic

system. Straightforward statistical analysis of each individual histogramme does not necessarily produce the most reliable rep-

resentation of the system dynamics. This paper proposes a Bayesian approach for the experimental identification of the system

dynamics, as it is represented by the limited dataset of eigenfrequencies.

1.2. Interval representation of eigenfrequency datasets

In structural dynamics applications, the estimation of the uncertainty in resonance frequencies of a structure is of large

interest to designers who want to avoid disastrous resonance problems to occur during its service life. Such estimation based

on experimental data is often very challenging given the cost associated with the necessary experimental campaigns. A pos-

sible solution is to apply interval methods for the quantification of this uncertainty. Indeed, interval calculation is finding its

way in the world of structural dynamics and numerical modelling. More specifically, the interval finite element method has

been well established [1–4] and implemented to determine intervals on output quantities of Finite Element (FE) models subject

to interval uncertainties. Also, recent advances in surrogate modelling [5,6] (anti-)optimization [7–9] and interval field theory

[10–14] further extends the applicability of interval analysis in numerical dynamical analysis. A next step towards practical

application of this method is the capturing of uncertain input data in a suitable format by defining and possibly estimating

intervals from available data [15–17]. Interval estimation concerns the capturing of the variability of a quantity x by an upper

and a lower bound that effectively limit the possible values that x can take. Besides this, in between these bounds, all val-

ues are assumed to have a finite nonzero probability of occurring. However, no value of x has a defined probability, except

those which fall out of the interval, as they have a probability equal to 0. Obviously, this means that before using interval

quantification, it should be clear that acquiring probabilistic output (e.g. failure chances), is not an objective of the uncer-

tainty analysis. This is for example the case in a worst-case scenario analysis, where the objective is to identify the lowest

performing possible outcome (e.g. resonance frequencies) of a non-deterministic system and to ensure it is still sufficiently

performing according to the demands. All quantities in the field of interest are theoretically bounded. Many quantities can-

not drop below zero (eigenfrequencies, thicknesses, stiffnesses, etc.). However, their physical bounds are of greater interest,

which are usually much narrower and therefore of greater practical use. Assume an uncertain quantity x and a total pop-

ulation of N. A total of n samples (n ≪ N) of this population are available, in which a minimal value and maximal value⟨
x̂m ∣ x̂M

⟩
is observed. The objective is to find plausible values on the minimal and maximal value x, and x within the entire

population, and use this as bounds for the interval xI =
⟨

x ∣ x
⟩

. Obviously, a first estimate could be to just take the observed

bounds as estimate for the interval: xI =
⟨

x̂m ∣ x̂M

⟩
, but for very small n, this can possibly be a very non-conservative result,

with many samples in the total population falling out of the estimated interval. This renders the interval not useable for fur-

ther reliability analysis, as too little variability of the quantity x is captured by the interval. The result should be conserva-

tive enough while still taking into account as much of the available information contained in the limited dataset as possi-

ble.

Section 2 discusses general aspects about Bayesian analysis and its application in possibilistic context. Section 3 reformulates

Bayes’s theorem in terms of interval bounds and Extreme Value Distributions and a parametrization of the generalize the PDF

shape. Section 4 then introduces two ways to evaluate the likelihood function in interval Bayesian analysis. The last section

discusses the application of this method to frequency data obtained from the DLR AIRMOD structure.
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