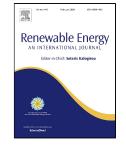
Journal Pre-proof

An Experimental and Numerical Investigation on Temperature Profile of Underground Soil in the Process of Heat Storage

Donghai Zhang, Penghui Gao, Yang Zhou, Yijiang Wang, Guoqing Zhou

PII: S0960-1481(19)31817-8


DOI: https://doi.org/10.1016/j.renene.2019.11.123

Reference: RENE 12671

To appear in: Renewable Energy

Received Date: 01 July 2019

Accepted Date: 23 November 2019

Please cite this article as: Donghai Zhang, Penghui Gao, Yang Zhou, Yijiang Wang, Guoqing Zhou, An Experimental and Numerical Investigation on Temperature Profile of Underground Soil in the Process of Heat Storage, *Renewable Energy* (2019), https://doi.org/10.1016/j.renene.2019.11.123

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier.

An Experimental and Numerical Investigation on Temperature Profile of Underground Soil in the Process of Heat Storage

Donghai Zhang^{1,2}, Penghui Gao^{1,2}, Yang Zhou^{1,2}, Yijiang Wang^{1,2}, Guoqing Zhou^{1,2} (1.School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China;

2.State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China)

Abstract: A detailed understanding of soil temperature in underground energy engineering is a major concern in designing a high-efficient and less cost-operated underground soil energy system (e.g. ground source heat pump (GSHP) and ground energy pile system). In this paper, similitude theory is introduced as a methodology to design a small-scale thermal energy storage experiment setup for studying the heat transfer behavior in underground soil. Based on heat transfer governing equations and similitude analysis, the scaling laws and similarity conditions are derived, and a laboratory scaled-down thermal energy storage experiment model is designed and constructed. The proposed experiment can be used to study the heat transfer behavior of ground energy storage by reducing the time consumption substantially. A transient 3-D numerical model is proposed and validated with sandbox data set. The numerical model is applied to calculate the temperature variation of ground heat exchanger in full scale and used to estimate the accuracy using the p-linear distribution approximation to represent the vertical profile of fluid temperature. The comparison between the experiment model results (after scaling to prototype) and numerical results are given, and the coincidence between them is good, particularly at the late-time period. For implementing a design and optimization of the field-scale engineering underground energy storage system, by using the scaling factor, the results could be used to predict the temperature distribution of the full-scale underground energy storage system with different types of underground soil in different controlled working conditions. This work would provide more accurate reference data and foundation with less time-consuming for engineering application of underground energy storage system, such as GSHP, ground energy pile and etc..

Keywords: underground soil; borehole heat exchanger; similitude experiment; energy storage; numerical simulation; geothermal energy

1. Introduction

Using renewable energy such as solar energy, waste or low-carbon heat sources, instead of fossil fuels, for district heating, heat pumps or heat storages would greatly reduce CO_2 emissions and environmental loads. For many places in the world, the ground source heat pump (GSHP) is recommended as an efficient supplementary system to be combined with

Download English Version:

https://daneshyari.com/en/article/13422218

Download Persian Version:

https://daneshyari.com/article/13422218

<u>Daneshyari.com</u>