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A B S T R A C T

Assessing the failure probability of complex structure is a difficult task in presence of various uncertainties. In
this paper, a new adaptive approach is developed for reliability analysis by ensemble learning of multiple
competitive surrogate models, including Kriging, polynomial chaos expansion and support vector regression.
Ensemble of surrogates provides a more robust approximation of true performance function through a weighted
average strategy, and it helps to identify regions with possible high prediction error. Starting from an initial
experimental design, the ensemble model is iteratively updated by adding new sample points to regions with
large prediction error as well as near the limit state through an active learning algorithm. The proposed method
is validated with several benchmark examples, and the results show that the ensemble of multiple surrogate
models is very efficient for estimating failure probability (> 10−4) of complex system with less computational
costs than the traditional single surrogate model.

1. Introduction

Structural reliability analysis is of great importance in engineering,
it aims at computing the probability of failure of a system with respect
to some performance criterion in the presence of various uncertainties.
For a given structural system with n-dimensional input parameter

= …x x x x( , , , )n1 2
T, the performance function (also known as limit state

function) xg ( ) divides the input variable space into two domains, i.e,
the safety domain ( >xg ( ) 0) and failure domain ( xg ( ) 0). Thus the
failure probability Pf reads:
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( ) 0xg ( ) 0 is the indicator function of the failure

domain and xf ( )X is the joint probability density function (PDF) of x .
The task of reliability analysis is to perform the integration in Eq.

(1). Generally, the reliability analysis method in literature can be ca-
tegorized into three types: approximate analytical methods [1,2], nu-
merical integration methods [3–7] and numerical simulation methods
[8–16]. The approximate analytical methods expand the performance
function xg ( ) at mean point or design point by Taylor expansion, and
ignore the higher order terms to estimate the failure probability, such as
First order reliability method (FORM) [1] and Second order reliability
analysis method (SORM) [2]. However, their accuracy can hardly be

guaranteed especially for highly non-linear problems. For numerical
integration methods, the first few moments of the performance function
are computed by the point estimation method [3–5] or sparse grid in-
tegration method [6], and then failure probability is estimated by these
moments. However, the computation cost of these methods increases
sharply (exponentially) with the input variable dimensionality. The
numerical simulation methods include Monte Carlo simulation (MCS),
Importance sampling (IS) [8,9,17], Subset simulation (SS) [11–13,18]
and recent work called thermodynamic integration and parallel tem-
pering (TIPT) method [19]. These methods are relatively robust to the
type and dimension of the problem, but they cannot satisfy the com-
putational efficiency requirements for time-consuming model. To re-
duce the computational cost for reliability analysis, surrogate-assisted
methods have received much attention in the past few decades. These
methods aim at constructing a surrogate model (also known as meta-
model) with an explicit expression based on a set of observed points to
approximate the true performance function, and thus one can perform
reliability analysis efficiently based on the cheap-to-evaluate surrogate
model. For decades, several types of surrogate models are available in
literatures for reliability analysis including polynomial chaos expansion
(PCE) [20], Kriging (Gaussian Process, GP) [21–24], support vector
machine (SVM) and support vector regression (SVR) [12,25,26], high
dimensional model representation (HDMR) [27] and so on.

Recently, surrogate models combined with active learning strategies
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have been well developed for reliability analysis [21,23,24,28–34] of
complex system, especially for Kriging model. These methods start from
an initial design of experiment (DoE), and enrich it sequentially by
adding new sample points based on the predefined learning function.
The learning function is usually developed based on the statistical in-
formation of surrogate model from different perspectives. The expected
feasibility function (EFF) proposed by Bichon et al. [35] and U function
developed by Echard et al. [28,29] both select points near the limit
state surface of Kriging model with large prediction uncertainty. The
expected risk function (ERF) in Ref [36] and H function in Ref [21]
search for points with large prediction error and information entropy in
the vicinity of limit state surface of Kriging model respectively. Sun
et al. [23] developed the least improvement function (LIF) based on
Kriging, which quantifies the improvement of the accuracy of estimated
failure probability when new points are added to the DoE. Marelli et al.
[20] presented a learning function that focuses on the probability of
misclassification of PCE model based on bootstrap resampling strategy.
In Ref [37], adaptive SVR model is presented to estimate the failure
probability, where the learning function is defined by the distance
criteria. It has been proven that these well-developed learning functions
are very efficient to improve the accuracy and efficiency for reliability
analysis of complex models.

In this paper, instead of fitting the performance function with single
surrogate model, we explore the possibility of ensemble of multiple
competitive surrogate models to approximate the performance function
for reliability analysis. Each surrogate model is required to predict the
model response, and the final prediction is obtained by a weighted
average of multiple surrogate models. In the meanwhile, the local
prediction error is estimated by the variance of the multiple surrogate
models, thus an active learning algorithm is developed to select some
dangerous sample points sequentially in the regions with large pre-
diction error to improve the prediction accuracy as much as possible.

The layout of this paper is as follows. Section 2 presents an overview
of PCE, Kriging and SVR surrogate models. In section 3, the proposed
active learning strategy for reliability analysis is presented. Four ex-
amples are employed in Section 4 to demonstrate the efficiency and
accuracy of the proposed method. Finally, some conclusions are drawn
in Section 5.

2. Review of surrogate models

In this section, three kinds of surrogate models, namely, PCE,
Kriging and SVR are briefly reviewed.

2.1. Polynomial chaos expansion

The classic PCE was first proposed by Wiener [38,39] in the 30 s.
The key concept of PCE is to expand the model response onto basis
made of multivariate polynomials that are orthogonal with respect to
the joint distribution of the input variables. In this setting, character-
izing the response probability density function (PDF) is equivalent to
evaluate the PC coefficients, i.e. the coordinates of the random response
in this basis. The classic PCE of order p for n-dimensional random
variable x can be expressed as [40]:

= = =x xg~ ( ) ( ), | | ,P p i
n

i0 | | 1 (2)

where = …{ , , }( 0)n i1 is the multidimensional index notation
vector, is the unknown deterministic coefficients vector, and x( ) is
the multivariate polynomial vector. The total number of the expansion
terms in the summation of Eq. (2) is = + +P p n p n( )!/ ! ! 1. To calculate
the PCE coefficients, the traditional projection method and regression
method [41,42] suffer from the so-called curse of dimensionality.

To overcome this issue, many attempts have been made to develop
sparse PCE model in the field of uncertainty quantification (UQ)
[43–50], the common idea holding in these methods is that the PCE

coefficients are sparse (i.e. having only several dominant coefficients).
Given the training sample X Y{ , }, where = …X x x{ , , }N1

Tare the input
data, = …Y Y Y{ , , }N1

Tare the corresponding model responses and N is the
size of sample, the dominant PCE coefficients can be recovered by
solving the following optimization problem

= Yarg min subject to1
(3)

where 1 is the l1 norm of PCE coefficients, is a tolerance para-
meter of the truncation error and = ×x: ( )j i ij

N P is the measure
matrix. In this paper, the least angle regression (LAR) technique is used
to develop sparse PCE, which is available from the UQLab toolbox [51].

2.2. Kriging/Gaussian process

Kriging model (also known as GP) was first proposed in the field of
geostatistics by Krige [52] and Matheron [53]. It tends to find the best
linear unbiased predictor while minimizes the mean square error of the
prediction. The universal Kriging is composed of a polynomial term
used for global trend prediction and a Gaussian process term used for
local deviation regression, which can be expressed as

= +x x xg p Z( ) ( ) ( ),K
T (4)

where = …x x xp p p( ) [ ( ), , ( )]M1
T is the polynomial basis function,

= …[ , , ]M1
T represents the corresponding regression coefficient

vector, and xZ ( ) is a Gaussian process with zero mean and covariance
defined as

=x x x xCov Z Z R( ( ), ( )) ( , , ),i j i j
2 (5)

where 2 is the variance of xZ ( ), and x xR ( , , )i j is the correlation
coefficient between xZ ( )i and xZ ( )j with parameters = …[ , , ]n1

T. The
correlation function controls the smoothness of the Kriging model, and
here the Gaussian correlation function is used in the present work,
which is defined as

=
=
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Generally, the unknown hyper-parameters = ( , , )2 of Kriging
model can be tuned by maximum likelihood estimation technique. After
the optimal parameters = ( , , )2 are obtained, the posterior dis-
tribution of xg ( )K is a Gaussian process x x xg µ( )Ñ( ( ), ( ))K

2 with mean

= = +x x p x r x R Y Fg µ~ ( ) ( ) ( ) ( ) ( ),K
T T 1 (7)

and variance

= +
x
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1 (8)

where = …r x x x x xR R( ) [ ( , ), , ( , )]N1
T represents the correlation vector

between x and N observed points, = ×R x xR: ( , )i j ij
N N is the corre-

lation matrix and = ×F xf: ( )j i ij
N M . The posterior mean in Eq. (7) is

known as the Kriging predictor xg~ ( )K . The posterior variance formula of
Eq. (8) corresponds to the mean squared error (MSE) of this predictor
and it is also known as the Kriging variance.

2.3. Support vector regression

Support-vector regression (SVR) was developed on statistical
learning theory by Vapnik [54,55]. Generally, a linear SVR model is
formulated as:

= +x xg b~ ( ) · ,S (9)

where n is the coefficient vector and b is a constant. The goal
of SVR is to find a function xg~ ( )S that can estimate the output response
value whose deviation is less than ε from the real targets of the training
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