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Active learning (AL) repeatedly trains the classifier with the minimum labeling budget to improve the cur-
rent classification model. The training process is usually supervised by an uncertainty evaluation strategy.
However, the uncertainty evaluation always suffers from performance degeneration when the initial la-
beled set has insufficient labels. To completely eliminate the dependence on the uncertainty evaluation
sampling in AL, this paper proposes a divide-and-conquer idea that directly transfers the AL sampling as
the geometric sampling over the clusters. By dividing the points of the clusters into cluster boundary and
core points, we theoretically discuss their margin distance and hypothesis relationship. With the advan-
tages of cluster boundary points in the above two properties, we propose a Geometric Active Learning
(GAL) algorithm by knight's tour. Experimental studies of the two reported experimental tasks includ-
ing cluster boundary detection and AL classification show that the proposed GAL method significantly

outperforms the state-of-the-art baselines.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Active learning (Cohn, Atlas, & Ladner, 1994) is developed to
further improve the prediction accuracy of the current classifica-
tion model in supervised learning problems without sufficient la-
bels. This study has been widely applied in various of learning sce-
narios when the unannotated data are abundant but annotating
them is expensive and time-consuming, such as semi-supervised
text classification (Hu, Mac Namee, & Delany, 2016), image anno-
tation (Li, Shi, Liu, Hauptmann, & Xiong, 2012), transfer learning
(Guo, Ding, Wang, & Jin, 2016), etc. Generally, the proposed AL al-
gorithms focus on the construction of an uncertainty evaluation
function which guides the subsequent sampling such as Lewis and
Gale (1994) and Roy and McCallum (2001), etc. However, the label
diversity and distribution features of the initial labeled set decide
the performance of the uncertainty evaluation progress. When the
initial labeled set only has a few data, performance degeneration
of the subsequent sampling would be inevitable.

Geometric sampling shows its power in various of domains
such as fast SVM training (Tsang, Kwok, & Cheung, 2005), Bayesian
adversarial spheres algorithm (Bekasov & Murray, 2018), geomet-
ric deep learning (Fey, Eric Lenssen, Weichert, & Miiller, 2018), etc.
Especially in large scale classification issue, Core Vector Machine
(CVM) (Tsang, Kwok, & Zurada, 2006) changed the SVM to a prob-
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lem of minimum enclosing ball (MEB), which is popular in hard-
margin support vector data description (SVDD) (Tax & Duin, 2004),
and then iteratively calculated the ball center and radius in a (1+¢€)
approximation. In this process, the cluster boundary points located
on the surface of each MEB are added into a special data collection
called core sets. Trained by the detected core sets, the proposed
CVM performed faster than the SVM and needed less support vec-
tors. Especially in the Gaussian kernel, a fixed radius was used to
simplify the MEB problem to the EB (Enclosing Ball), and accel-
erated the calculation process of the Ball Vector Machine (BVM)
(Tsang, Kocsor, & Kwok, 2007). Without sophisticated heuristic
searches in the kernel space, the training model, using points of
high dimensional ball surface, can still be approximated to the op-
timal solution.

In this paper, we are motivated by the advantages of bound-
ary points of CVM and propose a divide-and-conquer approach to
geometric sampling for AL (see Fig. 1). Underlying MEB model,
we divide the data of each class into two types: cluster boundary
and core points. In geometric description, cluster boundary points
are located at the surface of one cluster and core points are dis-
tributed inside the cluster. To study the properties of the two types
of points, we compare them from two-fold: margin distance (w.r.t.
Lemma 1) and hypothesis relationship (w.r.t. Lemma 2). The con-
clusion shows that cluster boundary points play more important
role in the construction of the classification hyperplane compared
to core points in a geometrical perspective.
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Fig. 1. Motivation of our active learning work. In each sub-figure, the black line denotes the generated SVM classification model based on the data points in the figure. (a)
Training the original data space. (b) Training the cluster core points. (c) Training the cluster boundary points. We observe that the generated classification lines of (c) are

similar to the models of (a) and (b).

Our conquer step is to obtain the cluster boundary points. By
setting a knight in the geometric space, the path disagreement of
the tour helps us to differ from cluster boundary and core points.
We assume the tour path is decided by the update process of
traversing 1 to k nearest neighbors (kNN) of the current tour posi-
tion (data point). Their geometric disagreement in path length be-
come the key of our detection method, i.e., the average tour path of
boundary points are longer than that of the core points. With the
above divide-and conquer analysis, we finally propose a Geometric
Active Learning (GAL) algorithm by training the geometric cluster
boundary points. The contributions of this paper are described as
follows.

+ We propose a divide-and-conquer idea to geometric AL sam-
pling. It transfers the uncertain sampling space of AL into a set
of the cluster boundary points.

We provide the geometric insights for cooperating cluster
boundary points in AL under the assumption of geometric clas-
sification.

An AL algorithm termed GAL is developed in this paper. It sam-
ples independently without iteration and help from the labeled
data.

We break the theoretical curse of uncertainty evaluation sam-
pling by GAL algorithm since it is neither a model-based nor
label-based strategy with the fixed time and space complexi-
ties of O(NlogN) and O(N), respectively.

A lot of experiments are conducted to verify that GAL can be
applied in multi-class settings to overcome the binary classifi-
cation limitation of many existing AL approaches.

The remainder of this paper is structured as follows. The related
work is reported in Section 2. The preliminaries are described in
Section 3 and the geometric insights on cluster boundary points in
AL are presented in Section 4. The divide-and-conquer approach of
knight’s tour is presented in Section 5. The experiments and results
are reported in Sections 6. The discussion is presented in Section 7.
Finally, we conclude this paper in Section 8.

2. Related work

In this section, we present the related work on active learning
and cluster boundary research.

2.1. Active learning

The learning goal of AL is to obtain a descried error rate by an-
notating as fewer queries as possible. To improve the performance
of the current classification model, the AL learner (human expert)
is allowed to pick up a subset from an unlabeled data pool. Those

data, which may largely affect the subsequent update of the learn-
ing model, are the primary goals of the learner. As a policy, ac-
cessing the unlabeled data pool to sample and querying their true
labels with a given budge are approved. However, all the learners
would face an awkward and difficult situation: how to fast select
the descried data from the massive unlabeled data in the pool.

To resolve the above challenges, uncertainty evaluation (Lewis
& Gale, 1994) was proposed to guide AL by selecting the most in-
formative or representative instances in a given sampling scheme
or distribution assumption, such as margin (Tong & Koller, 2001),
uncertainty probability (Roy & McCallum, 2001), maximum en-
tropy (Melville & Mooney, 2004), confused votes by committee
(Seung, Opper, & Sompolinsky, 1992), etc. For example, Tong and
Koller (2001) proposes to select the data which is nearest to the
current classification hyperplane, Roy and McCallum (2001) selects
the data which can maximize the error rate change, Melville and
Mooney (2004) selects the data with the maximum entropy of pre-
diction probability, etc. Basically, these uncertainty-based AL algo-
rithms aim to reduce the number of queries or converge the clas-
sifier quickly. Accompanied by multiple iterations, querying stops
when the defined sampling number is met or a satisfactory model
is found. It is thus these algorithms still need to traverse the whole
data set repeatedly in this framework, although this technique per-
forms well. However, they always suffer from one main limitation,
that is, heuristically searching the whole data space to obtain the
optimal sampling subset is impossible because of the unpredictable
scale of the candidate set.

In practice, incorporating the unsupervised learning in the sam-
pling process shows powerful advantages such as Nguyen and
Smeulders (2004), Kang, Ryu, and Kwon (2004), and Urner, Wulff,
and Ben-David (2013). It makes the learner solve the previous lim-
itation be possible. One classical method (Dasgupta & Hsu, 2008) is
performing the hierarchical clustering before sampling to improve
th lower bound of the subsequent training performance. By setting
up a probability condition, the learner is allowed to confidently
annotate a number of subtrees with the label of the root note.
When the clustering structure is perfect, it wold be positive for the
sampling. However, an improper clustering results will mislead the
annotation process. Then, performance degeneration of the subse-
quent sampling is inevitable.

2.2. Cluster boundary

Cluster boundary points are a set of special objects distributed
in the margin regions of each cluster. Their labels are given by the
cluster structure and guide the clustering partition. However, those
label assignations are uncertain. Nowadays, the practical advantage
of the cluster boundary has been widely used in the latent virus
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