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a b s t r a c t 

Active learning (AL) repeatedly trains the classifier with the minimum labeling budget to improve the cur- 

rent classification model. The training process is usually supervised by an uncertainty evaluation strategy. 

However, the uncertainty evaluation always suffers from performance degeneration when the initial la- 

beled set has insufficient labels. To completely eliminate the dependence on the uncertainty evaluation 

sampling in AL, this paper proposes a divide-and-conquer idea that directly transfers the AL sampling as 

the geometric sampling over the clusters. By dividing the points of the clusters into cluster boundary and 

core points, we theoretically discuss their margin distance and hypothesis relationship. With the advan- 

tages of cluster boundary points in the above two properties, we propose a Geometric Active Learning 

(GAL) algorithm by knight’s tour. Experimental studies of the two reported experimental tasks includ- 

ing cluster boundary detection and AL classification show that the proposed GAL method significantly 

outperforms the state-of-the-art baselines. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

Active learning ( Cohn, Atlas, & Ladner, 1994 ) is developed to 

further improve the prediction accuracy of the current classifica- 

tion model in supervised learning problems without sufficient la- 

bels. This study has been widely applied in various of learning sce- 

narios when the unannotated data are abundant but annotating 

them is expensive and time-consuming, such as semi-supervised 

text classification ( Hu, Mac Namee, & Delany, 2016 ), image anno- 

tation ( Li, Shi, Liu, Hauptmann, & Xiong, 2012 ), transfer learning 

( Guo, Ding, Wang, & Jin, 2016 ), etc. Generally, the proposed AL al- 

gorithms focus on the construction of an uncertainty evaluation 

function which guides the subsequent sampling such as Lewis and 

Gale (1994) and Roy and McCallum (2001) , etc. However, the label 

diversity and distribution features of the initial labeled set decide 

the performance of the uncertainty evaluation progress. When the 

initial labeled set only has a few data, performance degeneration 

of the subsequent sampling would be inevitable. 

Geometric sampling shows its power in various of domains 

such as fast SVM training ( Tsang, Kwok, & Cheung, 2005 ), Bayesian 

adversarial spheres algorithm ( Bekasov & Murray, 2018 ), geomet- 

ric deep learning ( Fey, Eric Lenssen, Weichert, & Müller, 2018 ), etc. 

Especially in large scale classification issue, Core Vector Machine 

(CVM) ( Tsang, Kwok, & Zurada, 2006 ) changed the SVM to a prob- 
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lem of minimum enclosing ball (MEB), which is popular in hard- 

margin support vector data description (SVDD) ( Tax & Duin, 2004 ), 

and then iteratively calculated the ball center and radius in a (1+ ε) 

approximation. In this process, the cluster boundary points located 

on the surface of each MEB are added into a special data collection 

called core sets. Trained by the detected core sets, the proposed 

CVM performed faster than the SVM and needed less support vec- 

tors. Especially in the Gaussian kernel, a fixed radius was used to 

simplify the MEB problem to the EB (Enclosing Ball), and accel- 

erated the calculation process of the Ball Vector Machine (BVM) 

( Tsang, Kocsor, & Kwok, 2007 ). Without sophisticated heuristic 

searches in the kernel space, the training model, using points of 

high dimensional ball surface, can still be approximated to the op- 

timal solution. 

In this paper, we are motivated by the advantages of bound- 

ary points of CVM and propose a divide-and-conquer approach to 

geometric sampling for AL (see Fig. 1 ). Underlying MEB model, 

we divide the data of each class into two types: cluster boundary 

and core points. In geometric description, cluster boundary points 

are located at the surface of one cluster and core points are dis- 

tributed inside the cluster. To study the properties of the two types 

of points, we compare them from two-fold: margin distance (w.r.t. 

Lemma 1 ) and hypothesis relationship (w.r.t. Lemma 2 ). The con- 

clusion shows that cluster boundary points play more important 

role in the construction of the classification hyperplane compared 

to core points in a geometrical perspective. 
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Fig. 1. Motivation of our active learning work. In each sub-figure, the black line denotes the generated SVM classification model based on the data points in the figure. (a) 

Training the original data space. (b) Training the cluster core points. (c) Training the cluster boundary points. We observe that the generated classification lines of (c) are 

similar to the models of (a) and (b). 

Our conquer step is to obtain the cluster boundary points. By 

setting a knight in the geometric space, the path disagreement of 

the tour helps us to differ from cluster boundary and core points. 

We assume the tour path is decided by the update process of 

traversing 1 to k nearest neighbors ( k NN) of the current tour posi- 

tion (data point). Their geometric disagreement in path length be- 

come the key of our detection method, i.e., the average tour path of 

boundary points are longer than that of the core points. With the 

above divide-and conquer analysis, we finally propose a Geometric 

Active Learning (GAL) algorithm by training the geometric cluster 

boundary points. The contributions of this paper are described as 

follows. 

• We propose a divide-and-conquer idea to geometric AL sam- 

pling. It transfers the uncertain sampling space of AL into a set 

of the cluster boundary points. 

• We provide the geometric insights for cooperating cluster 

boundary points in AL under the assumption of geometric clas- 

sification. 

• An AL algorithm termed GAL is developed in this paper. It sam- 

ples independently without iteration and help from the labeled 

data. 

• We break the theoretical curse of uncertainty evaluation sam- 

pling by GAL algorithm since it is neither a model-based nor 

label-based strategy with the fixed time and space complexi- 

ties of O(N logN ) and O(N) , respectively. 

• A lot of experiments are conducted to verify that GAL can be 

applied in multi-class settings to overcome the binary classifi- 

cation limitation of many existing AL approaches. 

The remainder of this paper is structured as follows. The related 

work is reported in Section 2 . The preliminaries are described in 

Section 3 and the geometric insights on cluster boundary points in 

AL are presented in Section 4 . The divide-and-conquer approach of 

knight’s tour is presented in Section 5 . The experiments and results 

are reported in Sections 6 . The discussion is presented in Section 7 . 

Finally, we conclude this paper in Section 8 . 

2. Related work 

In this section, we present the related work on active learning 

and cluster boundary research. 

2.1. Active learning 

The learning goal of AL is to obtain a descried error rate by an- 

notating as fewer queries as possible. To improve the performance 

of the current classification model, the AL learner (human expert) 

is allowed to pick up a subset from an unlabeled data pool. Those 

data, which may largely affect the subsequent update of the learn- 

ing model, are the primary goals of the learner. As a policy, ac- 

cessing the unlabeled data pool to sample and querying their true 

labels with a given budge are approved. However, all the learners 

would face an awkward and difficult situation: how to fast select 

the descried data from the massive unlabeled data in the pool. 

To resolve the above challenges, uncertainty evaluation ( Lewis 

& Gale, 1994 ) was proposed to guide AL by selecting the most in- 

formative or representative instances in a given sampling scheme 

or distribution assumption, such as margin ( Tong & Koller, 2001 ), 

uncertainty probability ( Roy & McCallum, 2001 ), maximum en- 

tropy ( Melville & Mooney, 2004 ), confused votes by committee 

( Seung, Opper, & Sompolinsky, 1992 ), etc. For example, Tong and 

Koller (2001) proposes to select the data which is nearest to the 

current classification hyperplane, Roy and McCallum (2001) selects 

the data which can maximize the error rate change, Melville and 

Mooney (2004) selects the data with the maximum entropy of pre- 

diction probability, etc. Basically, these uncertainty-based AL algo- 

rithms aim to reduce the number of queries or converge the clas- 

sifier quickly. Accompanied by multiple iterations, querying stops 

when the defined sampling number is met or a satisfactory model 

is found. It is thus these algorithms still need to traverse the whole 

data set repeatedly in this framework, although this technique per- 

forms well. However, they always suffer from one main limitation, 

that is, heuristically searching the whole data space to obtain the 

optimal sampling subset is impossible because of the unpredictable 

scale of the candidate set. 

In practice, incorporating the unsupervised learning in the sam- 

pling process shows powerful advantages such as Nguyen and 

Smeulders (2004) , Kang, Ryu, and Kwon (2004) , and Urner, Wulff, 

and Ben-David (2013) . It makes the learner solve the previous lim- 

itation be possible. One classical method ( Dasgupta & Hsu, 2008 ) is 

performing the hierarchical clustering before sampling to improve 

th lower bound of the subsequent training performance. By setting 

up a probability condition, the learner is allowed to confidently 

annotate a number of subtrees with the label of the root note. 

When the clustering structure is perfect, it wold be positive for the 

sampling. However, an improper clustering results will mislead the 

annotation process. Then, performance degeneration of the subse- 

quent sampling is inevitable. 

2.2. Cluster boundary 

Cluster boundary points are a set of special objects distributed 

in the margin regions of each cluster. Their labels are given by the 

cluster structure and guide the clustering partition. However, those 

label assignations are uncertain. Nowadays, the practical advantage 

of the cluster boundary has been widely used in the latent virus 
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