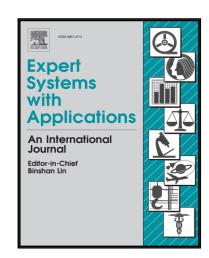
Journal Pre-proof

Wildfire detection using transfer learning on augmented datasets

Maria João Sousa, Alexandra Moutinho, Miguel Almeida

PII: S0957-4174(19)30693-1


DOI: https://doi.org/10.1016/j.eswa.2019.112975

Reference: ESWA 112975

To appear in: Expert Systems With Applications

Received date: 18 March 2019 Revised date: 19 July 2019

Accepted date: 23 September 2019

Please cite this article as: Maria João Sousa, Alexandra Moutinho, Miguel Almeida, Wildfire detection using transfer learning on augmented datasets, *Expert Systems With Applications* (2019), doi: https://doi.org/10.1016/j.eswa.2019.112975

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

Journal Pre-proof

Wildfire detection using transfer learning on augmented datasets

Maria João Sousa^{a*}, Alexandra Moutinho^a, Miguel Almeida^b

^aIDMEC, LAETA, Instituto Superior Técnico, Universidade de Lisboa,

Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal

^bADAI, LAETA, University of Coimbra

Rua Pedro Hispano, 12, 3030-289 Coimbra, Portugal

Abstract

Wildfire detection is a time-critical application as the difficulty to pinpoint ignition locations in a short time-frame often leads to the escalation of the severity of fire events. This problem has motivated considerable interest from expert systems research to develop accurate early-warning applications and the breakthroughs in deep learning in complex visual understanding tasks open novel research opportunities. However, despite the improvements in performance demonstrated in the current literature, a comprehensive study of the challenges and limitations of this approach is still a gap in the state-of-the-art. To address this issue, the contributions of this work are threefold. First, we overview recent works to identify common difficulties and shortcomings of these approaches, and assess issues related to the quality of the databases. Second, to overcome data limitations, this work proposes a transfer learning approach coupled with data augmentation techniques tested under a tenfold cross-validation scheme. The proposed framework enables leveraging an open-source dataset featuring images from more than 35 real fire events, which unlike video-based works offers higher variability between samples, allowing evaluating the approach in an extensive set of real scenarios. Third, this article presents an in-depth study

^{*}Corresponding author

 $Email\ addresses:\ {\tt maria.joao.sousa@tecnico.ulisboa.pt}\ ({\tt Maria\ João\ Sousa}^a), \\ {\tt alexandra.moutinho@tecnico.ulisboa.pt}\ ({\tt Alexandra\ Moutinho}^a),\ {\tt miguelalmeida@adai.pt}\ ({\tt Miguel\ Almeida}^b)$

Download English Version:

https://daneshyari.com/en/article/13428912

Download Persian Version:

https://daneshyari.com/article/13428912

<u>Daneshyari.com</u>