
ELSEVIER

Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

MILP formulation for generation and storage asset sizing and sitting for reliability constrained system planning

Chandrabhanu Opathella, Ayman Elkasrawy, Amr Adel Mohamed*, Bala Venkatesh

Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada

ARTICLE INFO

Keywords: Energy storage Sizing and siting Long-term planning ABSTRACT

Energy storage systems can provide a series of benefits to improve the operation flexibility and reliability of electric power systems, but their size and placement in the power system are critical to achieving expected benefits. An optimal ES sizing and siting study is presented in this paper. The formulation considers long-term economic benefits all generation and ES technologies for optimal sizing and siting.

Unlike other recent studies, the proposed MILP formulation consider reliability as planning parameter. It also considers different lifetimes of ES and other generation assets, and salvage values to compute the present value of benefits. Both long-term (several years) and short-term (hourly) power demand variation are accounted for optimal sizing generators and ES. The developed formulation provides optimal size, location and investment year (a complete investment plan) for all assets. It is a comprehensive, robust production-grade long-term asset planning formulation.

The paper presents a detailed case study conducted with the Ward-Hale 6-Bus test system and IEEE 118-Bus test system. Results show that ES assets can be used to improve system reliability overcome network congestion.

1. Introduction

Grid connected energy storage (ES) systems are becoming popular among planners and policymakers as a component which can improve the operational flexibility and reliability of electric power systems. Energy storage systems can provide a series of services such as voltage regulation support, frequency regulation support, ramp power support, and energy arbitrage. Electrical jurisdictions are starting to integrate ES to improve the operational flexibility of the grid [1,2]. For example, in 2014 Ontario's long-term energy plan recommended adding 50 MW of ES technologies [3]. This integration occurred in two phases, and all procured ES units should be operational by 2019 [4]. The integration of ES in utility grids was investigated in [5] with historical generation and demand data. It suggests that ES can improve the utilization of transmission assists. In [6,7], the impact electricity pricing schemes on the adoption of ES has been studied. Aforementioned studies show that the importance of ES for jurisdictions such as Ontario, Canada, where renewable energy penetration is considerable, negative electricity price hours are common, and grid operation flexibility needs to be improved.

The benefits of ES greatly depend on the connected location in the grid. Article [7-15] discuss different methods for siting and sizing generation assets in power systems. In Traditional generation expansion

planning, generation system reliability is an integrated planning parameter [7]. Long-term (15-20 years) investment plans are developed by sizing assets to match the peak of system load duration curve [7,8]. Under this method, daily variations of demand or intermittent generations are overlooked. Furthermore, siting of generation assets is carried out as an independent study. In recent studies, asset siting and sizing studies carried out as one problem considering daily variations of load and intermittent generation [9-15]. It is important to consider such variations to size the energy storage systems because those variations decide the power (MW) /energy (MWh) capacities of ES. A time period of 24h with 15 min resolution has been considered in [9]. However, recent research fails to generate long-term investment plans which assess the long-term economic benefits of different generation and ES technologies. Furthermore, they do not consider the generation reliability as a planning parameter for the siting and sizing as in [10,11]. Authors in [10] describe an optimal sizing and siting study conducted for the Western Electricity Coordinating Council (WECC) interconnection. The described method minimizes the operation cost of generators, cost of renewable energy spills and investment cost of ES, and it has the ability of analyzing large transmission systems. Authors states that due to computational difficulties, the model does not generate an optimal long-term investment plan. In [11], the optimal

E-mail address: amr.adel@ryerson.ca (A. Adel Mohamed).

^{*} Corresponding author.

¹ Amr is on leave from Cairo University.

Nomenclature NH number of sections of the daily load curve				
		I number of power import options		
Indices		IG number of intermittent generators		
		S number of seasons of the year		
Н	index for denoting daily load curve sections	T number of years of the planning per	riod	
i	index for denoting generators and energy storage	C pulverized coal-fired		
j	index for denoting bus numbers	D real power demand (MW)		
m	index for denoting power import options	ĒS , PES maximum, minimum of energy stora	age real power (MW)	
S	index denoting seasons of the year	G, PG generators real power limits: maxim	um minimum (MM)	
t	index for denoting years	-	,	
X	index for denoting a random system generation con-	I maximum real power import limit (MW)	
	tingency event	LL power flow limit of the line (MW)		
_		r discrete probability distribution fun	ction	
Parameters		V present value factor (unitless)	•	
		amp power ramp limit (MW)		
a	lower bound of binary variable a	S resource profiles of intermittent gen		
A	amortization factor (unitless)	T minimum run time of generators (h.	rs)	
AV	available generator and ES vector in the event x	DC shut down cost of CG (Million \$)		
β/γ	charge/discharge efficiency of energy storage	UC start-up cost CG (Million \$) Down time duration that generator need	1 1 . 1 . 6 .1	
В	price of power imports (Million \$/MWh)	time duration that generator need	shut down for the	
CCS	carbon capture and storage	maintenance (hrs)		
CG	conventional generators	number of all generation contingend		
CMC	combined cycle	b imaginary parts of elements of bus	admittance matrix of	
CT	combustion turbine	the transmission network (Ω)		
DT minimum downtime of generators (hrs)		Integer variables		
EES, EES maximum, minimum of energy storage energy (MWh)				
ES	energy storage	binary variable to denote annual sele	ections of GC. IG or ES	
Н	duration of hours of a load curve section (hrs)	(if selected 1, else 0)	2010110 01 00, 10 01 20	
IGCC	integrated gasification combined cycle	+ binary variable to denote investmen	t selection year of CG.	
IG	intermittent generators	IG or ES (if selected 1, else 0)	,	
K1	power rating-based capital cost coefficient of CG and IG	 redundant binary variable required 	for modelling	
***	(Million \$/MW)	binary selection variable for CG to o	•	
K2	power rating-based capital cost coefficient of ES (Million	, w binary variables to denote start-up a	-	
***	\$/MW)			
К3	generation based cost coefficient of CG and IG (Million \$/MWh)	'ariables		
K4	power rating based fixed operation and maintenance cost coefficient of CG and IG (Million \$/MW)	C amortized cost of capacity (Million	\$)	
K5	power rating based fixed operation and maintenance cost	bus voltage angle	co amond)	
-	coefficient of ES (Million \$/MW)	ES stored energy in the energy storage		
К6	energy ratings-based capital cost coefficient of ES (Million	annual power import cost (Million S		
	\$/MWh)	amortized investment cost (Million	· -	
K7	energy rating based fixed operation and maintenance cost	OC annual fixed operation and mainten	ance cost (Million \$)	
	coefficient of ES (Million \$/MWh)	C cost of generation (Million \$)	r atomogo at the and a c	
K8, K9, and K10 constants of the approximated linear LOLP curve (MW-1)		LFL lifetime left of generators and energy storage at the end of each year (years)		
LF	lifetime of generators and energy storage (years)	OLP loss of load probability		
η	self-discharge efficiency of energy storage (%)	ES real power supplies from energy sto	•	
NB	number of buses in the transmission system	ES+, PES¬ real power discharge/charge (M	(W)	
NCG	number of conventional generators	G real power generation (MW)		
ND	number of days in a season	I real power imports (MW)		
NES	number of energy storage	VG amortized salvage value (Million \$)		

storage locations are determined by minimizing the generation cost and investment cost of ES over a year.

Authors in [11], presents a three-stage planning procedure to identify the optimal locations and parameters of distributed ES units. Another similar study for optimal siting and sizing of ES for the operation planning of power systems with large-scale wind power integration is presented in [12]. Similar to the traditional asset planning, it has two separate algorithms for siting and sizing. For the optimal siting algorithm, all the buses are assumed to have ES installations with unlimited amounts of power and energy. For the optimal sizing algorithm, additional power and energy constraints are incorporated in the

optimization problem. These siting and sizing [11,12] studies use multilevel solution approaches, which could not guarantee the global optimal solution.

In transmission system planning, it a common practice to use DC power flow equations to formulate a linear problem [11,12]. If non-linear AC power flow equations are used, nonlinear or heuristic solution methods need to be adopted [13,16]. Recently, several planning studies have been conducted including energy storage system [17–20]. An extensive literature review on optimal sitting, sizing and control of ES have been presented in [17]. A stochastic expansion planning model considers wind farms and energy storage accompanied by transmission

Download English Version:

https://daneshyari.com/en/article/13429669

Download Persian Version:

https://daneshyari.com/article/13429669

<u>Daneshyari.com</u>