Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

New adaptive coordination approach between generator-transformer unit overall differential protection and generator capability curves

Mahmoud A. Elsadd^{a,*}, Wael Yousef^b, Almoataz Y. Abdelaziz^c

^a Department of Electrical Engineering, Faculty of Engineering, Menoufia University, 32511 Shebin El-Kom, Egypt

^b Power Generation Engineering and Services Company (PGESCO), Egypt

^c Faculty of Engineering & Technology, Future University in Egypt, Cairo, Egypt

ARTICLE INFO

Keywords: Differential protection Synchronous generator Generator protection Generator capability curves Power Transformer

ABSTRACT

This paper presents a new method to increase the reliability of the generator-transformer unit overall differential protection with use of the capability charts. The main objective of proposed method is preventing the false tripping under both heavy external solid-faults associated at Generator Step-Up Transformer (GSUT) HV Side and Unit Auxiliary Transformer (UAT) LV Side, load rejection either house load rejection or zero load rejection, and synchronization. Also, the proposed method simultaneously detects both faults at low voltage side of UAT where the fault current is very small and near to normal load current comparing to generator capacity and singleline-to-ground faults at GSUT Low voltage side (generator terminal) due to the transformer delta connection that isolates the zero-sequence component from the network side. The presented method is based on using adaptive setting (three selected settings) for the generator-transformer unit overall differential protection to raise the characteristic setting under the external fault, load rejection and synchronization and decrease the characteristic setting under internal high-impedance fault. The suitable setting is selected according to the location of the generator operating point inside the generator capability curves. The generator capability curves are divided into four operating regions, where each one has a different differential characteristic setting having dual-rate of change of the differential current. The four operating regions are normal load operation and high impedance internal fault; heavy external and internal faults; load rejection and synchronization; and at under excitation operation without faults, respectively. The real dynamic simulation of the power station has been conducted by ATP/EMTP software for the large steam turbine driven synchronous generator. Extensive simulation case studies for internal faults and system disturbances are investigated as well as practical recorded signals.

1. Introduction

The large thermal power generating units are a crucial source for producing electric power in any power grid. Therefore, various protective devices protect the thermal power generation plant (Synchronous Generator (SG)) and Generator Step-Up Transformer (GSUT) to minimize the possibility of occurring a damage, minimize the period and frequency of undesired outages, and then increase the power system stability [1,2]. The differential protection is the highest effective protection scheme to distinguish between normal operating conditions and internal faults. The generator-transformer unit overall differential protection function (relay 87O) is also designed to be a backup protection for the differential relays associated with SG, GSUT, and Unit Auxiliary Transformer (UAT) [2,3]. However, different real problems still encounter the protection system of the power plant [4,5]. During a North American grid blackout on 2003, 13 types of generating units' relays were unnecessarily tripped. This mal-operation led to lost 290 units which are around 52.7 GW [6]. Also, during a major system disturbance in western American in 1996, 22.9 GW are lost due to tripping different protective devices of the generation units. The cause of the tripping were 22 cases for power plant problems, 6 cases for excitation control/field problems, and around 35 cases of load rejection/power swing [6].

Several techniques were introduced to develop and implement a reliable primary protection for either Generator or Transformer, individually [7-21] and other techniques were introduced to develop and implement a reliable backup protection for generator-transformer unit [22-24]. The Artificial Neural Network (ANN) based techniques were presented in [7-9] to classify and detect the faults on generator stator winding. In [10] and [11], Fuzzy Logic- based techniques were

* Correspondence author.

E-mail address: mahmoud.elsadd@sh-eng.menofia.edu.eg (M.A. Elsadd).

https://doi.org/10.1016/j.ijepes.2019.105788

Received 18 March 2019; Received in revised form 23 October 2019; Accepted 13 December 2019 0142-0615/ © 2019 Published by Elsevier Ltd.

Table 1

-

Survey on relay manufacturers which are commonly used in power plants.

Manufacture	Relay Series	Relay Type	Main Function	Reference
Siemens	SIPROTEC5	7UT82/85/86/87	Transformer Differential Protection	[37,38]
	SIPROTEC4	7UT612/613/63		
	SIPROTEC5	7UM85	Generator Differential Protection	
	SIPROTEC4	7UM61/62		
GE (Alstom)	GEN1	MDP/CFD22A	Generator Differential Protection	[39]
	GEN2	SR489		
	GEN3	DGP-BA 0005		
	GEN4	DGP-CA		
	TR1	STD15C/BDD15B	Transformer Differential Protection	
GE/AREVA	Multilin	889	Comprehensive Protection and Management (Generator and Transformer)	[40-42]
	Multilin	745/345/T60/T35/845	Transformer Protection System	
	MiCOM Agile	P642/P643/P645		
	Multilin	489/G60	Generator Differential Protection	
	MiCOM Agile	P346/P343/P344/P345		
Schneider (AREVA)	MiCOM	P543/P544/P545/P546	Current Differential Protection Relay	[43]
		P630C/P631/P632/P633 P634	Transformer Differential Protection	
		P343/P344	Generator Differential Protection	
Schneider	Easergy P3	P3T32	Transformer Differential Protection	[44]
		P3G32	Generator Differential Protection	
Beckwith		M-3425A	Generator Differential Protection	[45,46]
		M-3311A	Transformer Differential Protection	
SEL		SEL-587	Current Differential Relay	[47]
		SEL-300G	Generator Protection Relay	[48]
ABB	REG	REG670	Generator Differential Protection	[49]
	RET	RET615	Transformer Differential Protection	[50]

Fig. 1. The selected thermal power plant declaring the schematic of the proposed technique.

Download English Version:

https://daneshyari.com/en/article/13429864

Download Persian Version:

https://daneshyari.com/article/13429864

Daneshyari.com