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This paper presents new fast algorithms for Hermite interpolation 
and evaluation over finite fields of characteristic two. The algo-
rithms reduce the Hermite problems to instances of the standard 
multipoint interpolation and evaluation problems, which are then 
solved by existing fast algorithms. The reductions are simple 
to implement and free of multiplications, allowing low overall 
multiplicative complexities to be obtained. The algorithms are 
suitable for use in encoding and decoding algorithms for multiplici-
ty codes.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Hermite interpolation is the problem of computing the coefficients of a polynomial given the val-
ues of its derivatives up to sufficiently large orders at one or more evaluation points. The inverse 
problem, that of evaluating the derivatives of the polynomial when given its coefficients, is sometimes 
referred to as Hermite evaluation. Over fields of positive characteristic p, the ith formal derivative 
vanishes identically for i greater than or equal to p. Consequently, it is usual to consider Hermite 
interpolation and evaluation with respect to the Hasse derivative over such fields when the charac-
teristic is small.

For now, let F simply denote a field. Then, for i ∈N , the map Di : F[x] → F[x] that sends f ∈ F[x]
to the coefficient of yi in f (x + y) ∈ F[x][y] is called the ith Hasse derivative on F[x]. For distinct 
evaluation points ω0, . . . , ωn−1 ∈ F and positive integer multiplicities �0, . . . , �n−1, the Hermite inter-
polation problem over F asks that we compute the coefficients of a polynomial f ∈ F[x] of degree 
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strictly less than � = �0 +· · ·+�n−1 when given (Di f )(ω j) for j ∈ {0, . . . , �i − 1} and i ∈ {0, . . . , n − 1}. 
The corresponding instance of the Hermite evaluation problem asks that we use the coefficients of f
to compute the � derivatives of the interpolation problem. Different versions of the problems specify 
different bases on which the polynomials are required to be represented. This paper considers the 
problems with respect to the monomial basis {xi | i ∈N} of F[x] only.

In this paper, the complexity of algorithms is measured by counting the number of field operations 
they perform. Let M(�) denote the number of operations in F required to multiply two polynomials 
in F[x] of degree strictly less than �. Then M(�) may be taken to be in O(�(log �) log log�) (Schönhage 
and Strassen, 1971; Schönhage, 1976/1977; Cantor and Kaltofen, 1991), and may be taken to be in 
O(�(log �)4log∗ �), where log∗ denotes the iterated logarithm, if the field is finite (Harvey and van der 
Hoeven, 2017; Harvey et al., 2016, 2017). Throughout the paper, the common assumption is made 
(used, for instance, by von zur Gathen and Gerhard (2013)) that M(�)/� is an increasing function of �.

The boundary case �0 = · · · = �n−1 = 1 of the Hermite interpolation and evaluation problems cor-
responds to standard multipoint interpolation and evaluation, allowing the problems to be solved 
with O(M(�) log �) operations by the use of remainder trees and fast Chinese remainder algorithms 
(Fiduccia, 1972; Moenck and Borodin, 1972; Borodin and Moenck, 1974; Bostan et al., 2003, 2004; 
Bernstein, 2004; see also von zur Gathen and Gerhard, 2013, Chapter 10). If the field admits a suit-
able “inborn” fast Fourier transform (FFT), as occurs when it is finite, and the evaluation points are 
fixed, then the algorithms of van der Hoeven (2016) allow a factor of size O(log log �) to be removed 
from these estimates. If the evaluation points form a geometric progression, then the complexity of 
solving the standard interpolation and evaluation problems reduces to O(M(�)) operations (Bostan 
and Schost, 2005). Similarly, the cost of solving both problems reduces to O(� log �) operations when 
the evaluation points coincide with those of a truncated Fourier transform (van der Hoeven, 2004, 
2005; Harvey, 2009; Harvey and Roche, 2010; see also Larrieu, 2017).

For the opposing boundary case of n = 1, the Hermite interpolation and evaluation problems 
reduce to computing Taylor expansions. Indeed, it follows directly from the definition of Hasse deriva-
tives that

f =
∑
i∈N

(Di f )(ω) (x − ω)i for f ∈ F[x] and ω ∈ F . (1)

Consequently, Hermite interpolation and evaluation at a single evaluation point can be performed 
with O(M(�) log �) operations in general (Borodin and Moenck, 1974; von zur Gathen, 1990; von 
zur Gathen and Gerhard, 1997), O(M(�)) operations if (� − 1)! is invertible in the field (Aho et al., 
1975; Vari, 1974) (see also von zur Gathen and Gerhard, 1997; Bini and Pan, 1994), and O(� log �)

operations if the field has characteristic equal to two (Gao and Mateer, 2010).
The first quasi-linear time algorithms for solving the general Hermite problems were proposed by 

Chin (1976). Truncating the Taylor expansion (1) after i terms gives the residue of degree less than i of 
f modulo (x −ω)i . Based on this observation, Chin’s evaluation algorithm begins by using a remainder 
tree to compute the residues of the input polynomial modulo (x − ωi)

�i for i ∈ {0, . . . , n − 1}. The 
Taylor expansion of each residue at its corresponding evaluation point is then computed to obtain 
the truncated Taylor expansion of the input polynomial. The interpolation problem can be solved by 
reversing these steps, with the residues combined by a fast Chinese remainder algorithm. It follows 
that the general Hermite interpolation and evaluation problems may be solved with O(M(�) log �)

operations (Chin, 1976; Olshevsky and Shokrollahi, 2000) (see also Bini and Pan, 1994; Pan, 2001).
In this paper, we present new algorithms for Hermite interpolation and evaluation over finite fields 

of characteristic two. The algorithms require the set of evaluation points to equal the field itself, and 
their corresponding multiplicities to be balanced, with |�i − � j | ≤ 1 for i �= j. While not solving the 
general interpolation and evaluation problems over these fields, the algorithms are suitable for use in 
multivariate Hermite interpolation and evaluation algorithms (Coxon, 2019), encoding and decoding 
algorithms for multiplicity codes (Kopparty, 2014; Coxon, 2019) and the codes of Wu (2015), and 
private information retrieval protocols based on these codes (Woodruff and Yekhanin, 2007; Augot et 
al., 2014).

When � is a multiple of the order q of the field, as occurs in some encoding and decoding contexts, 
the Hermite interpolation algorithm presented here performs �/q standard interpolations over the q
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