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a b s t r a c t

In many application areas, prior subject matter knowledge can be formulated as con-
straints on parameters in order to get a more accurate fit. A generalized ℓ1-penalized
quantile regression with linear constraints on parameters is considered, including either
linear inequality or equality constraints or both. It allows a general form of penalization,
including the usual lasso, the fused lasso and the adaptive lasso as special cases. The
KKT conditions of the optimization problem are derived and the whole solution path
is computed as a function of the tuning parameter. A formula for the number of
degrees of freedom is derived, which is used to construct model selection criteria for
selecting optimal tuning parameters. Finally, several simulation studies and two real data
examples are presented to illustrate the proposed method.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Different from classical regression methods that mainly focus on estimating conditional mean functions, quantile
regression is intended for estimating conditional quantile functions and is able to provide a comprehensive picture
on how a response depends on predictors. Consider a sample {(x1, y1), . . . , (xn, yn)}, where xi = (xi1, xi2, . . . , xip)T is a
p-dimensional vector of predictors and yi is the response. Quantile regression estimates an intercept α ∈ R and a vector
of coefficients β ∈ Rp by solving the following optimization problem,

min
α,β

n∑
i=1

ρτ (yi − α − βTxi),

where τ ∈ (0, 1), ρτ is the check function defined by

ρτ (u) = τuI(u ≥ 0) − (1 − τ )uI(u < 0),

and I(·) is the indicator function. Refer to Koenker (2005) for a comprehensive discussion on the theory, algorithms, and
applications of quantile regression.

Some recent studies on quantile regression have proposed several methods on analyzing high-dimensional data.
Li and Zhu (2008) studied quantile regression with a ℓ1-norm penalty. They developed an efficient algorithm to compute
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the solution path of β and derived a formula for degrees of freedom, which is used to assess the effective dimension of
the fitted model. Wu and Liu (2009) considered quantile regression with a SCAD penalty and proved that the estimates
have an oracle property. Belloni and Chernozhukov (2011) considered a scaled ℓ1-penalized quantile regression (ℓ1-QR)
in high-dimensional sparse models. They studied the theoretical properties of the estimators and showed that ℓ1-QR
is consistent at the near oracle rate under general conditions. Li et al. (2010) studied the penalized quantile regression,
including lasso, group lasso and elastic net penalties, from a Bayesian perspective. Galvao and Montes-Rojas (2010) applied
the penalized quantile regression for dynamic panel data. They showed that the penalty term reduces the dynamic panel
bias and increases the efficiency of the estimators.

The statistical model subject to linear constraints of the coefficients arises commonly in many applications. These
constraints are imposed on the parameters to accommodate prior knowledge and assumptions of the problem. Jagan-
nathan and Ma (2003) solved the portfolio variance minimization problem, where portfolio weights are bounded and are
also constrained to sum to one. The least squares problem with linear equality constraints are also widely used in signal
processing and pattern recognition, see for instance, Li et al. (1995) and Kalouptisidis (1997). Koenker and Ng (2005)
proposed an interior point algorithm for solving linear quantile regression subject to linear inequality constraints. It is a
modification of the Frisch–Newton algorithm introduced by Portnoy and Koenker (1997). Bollaerts et al. (2006) discussed
a non-parametric quantile regression using P-splines which assumes that the estimated quantile function is monotonically
increasing. However, there is no existing literature on regularized quantile regression with linear constraints to the best
of our knowledge.

To this end, this article will study a regularized quantile regression with linear constraints. Consider estimating α and
β by solving the following optimization problem,

min
α,β

n∑
i=1

ρτ (yi − α − βTxi) + λ∥Dβ∥1, subject to Cβ ≥ d and Eβ = f , (1)

where λ ≥ 0 is a tuning parameter, ∥ · ∥1 is the ℓ1-norm of a vector, D ∈ Rm×p, C ∈ Rq×p, d ∈ Rq, E ∈ Rs×p, and f ∈ Rs

are constant matrices or vectors specified by users according to assumptions or subject matter knowledge in application.
Problem (1) becomes the ℓ1-norm quantile regression in Li and Zhu (2008) when D is selected to be the identity matrix
and there is no linear constraints. Various choices of D in (1) yield adaptive lasso, fused lasso, or other variants. The
linearly constrained generalized lasso with squared-error loss has been studied by He (2011), James et al. (2013) and Hu
et al. (2015), etc. But they are not robust compared with quantile regression in the presence of noise and outliers.

Problem (1) proposes a general framework of quantile regression for high-dimensional data with linear constraints.
The solution algorithm is a big challenge because the check loss function and penalty are nondifferentiable. What is more,
the components of β are connected with the constraints and the penalty, which makes the problem more difficult than
the existing ℓ1-norm quantile regression. The main contribution of this paper lies in the following aspects.

(i) In terms of computing, an efficient algorithm is developed to compute {(α(λ), β(λ)), 0 ≤ λ ≤ ∞}, the whole solution
path of problem (1), instead of simply obtaining a solution at a given λ. The Karush–Kuhn–Tucker (KKT) conditions
of the problem is derived. It is also shown that the solution path is piecewise constant with respect to λ.

(ii) In terms of theory, a formula for the number of degrees of freedom is derived based on Stein’s framework, which
can be used as a measure of the model complexity. Two model selection criteria, namely SIC and GACV, are studied
and compared for their performance on model selection.

The rest of the paper is organized as follows. Section 2 derives the KKT conditions of the optimization problem and
describes the properties of the solution. Section 3 studies the entire solution path of the parameters as a function of λ.
In Section 4, a formula of degrees of freedom is obtained using Stein’s unbiased risk estimation (Stein, 1981). Simulation
studies in different scenarios and two real data examples are conducted to illustrate the application of the proposed
method in Sections 5 and 6, respectively. Some conclusion remarks are included in Section 7. All technical proofs of
lemmas and theorems are postponed to Appendix.

Notation convention: X = (xT1, . . . , x
T
n )

T
∈ Rn×p is the design matrix and y = (y1, . . . , yn) ∈ Rn is the response vector.

X k is the kth row of X . For an index set E , XE is the matrix obtained by selecting the rows of X with the indexes in E . The
same rule applies to matrices D, C and index sets A, B. yE is the vector with elements yi for i ∈ E . The same rule applies
to vectors v, u, ξ, d and index sets E , A, B. 0p is a p-dimensional vector of zeros. The same rule applies to 0|E| and 0|A|,
where |E| and |A| are the cardinalities of sets E and A, respectively. 1n is an n-dimensional vector of ones. The same rule
applies to 1|E|.

2. KKT conditions and properties of solution path

This section discusses the properties of the solution α̂ and β̂ to the problem (1). We first formulate the problem (1)
as a linear programming problem, and then derive its KKT conditions. The KKT conditions completely characterize α̂ and
β̂, and also shed light on the properties of the whole solution path, that is, α̂ and β̂ as a function of tuning parameter λ.
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