
Future Generation Computer Systems 104 (2020) 15–31

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

H2Pregel : A partition-based hybrid hierarchical graph computation
approach
Qiang Liu, XiaoShe Dong, Heng Chen ∗, Xingjun Zhang
School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China

a r t i c l e i n f o

Article history:
Received 20 March 2018
Received in revised form 2 August 2019
Accepted 10 September 2019
Available online 16 September 2019

Keywords:
Graph computing
Hybrid computation
BSP model
Hierarchical

a b s t r a c t

A partition-based hybrid hierarchical graph computation approach, called H2Pregel is proposed to
address the redundant supersteps and inefficient computation problems due to low access locality.
The H2Pregel preprocesses the input graph through a distributed recode algorithm to ensure the
continuity and sequence of vertex ids, then employs a hybrid approach to combine the advantages
of both synchronous and asynchronous models, and hierarchically computes the high proportion
of interior messages generated by high quality partition algorithms. Moreover, H2Pregel leverages
configurable parallel threads to accelerate local computation by ‘‘sub-supersteps’’, and employs an
exterior messages stealing optimization to avoid extra communication overheads between tasks. We
implemented H2Pregel on Giraph, a classic open source system based on Pregel. The evaluation results
on large-scale graphs show that, compared with Pregel in three partition algorithms, H2Pregel can
achieve average speedups by 1.12–4.52 times and decrease average communication messages by
23.5%-55.5%, and average supersteps by 15.8%-82.0%.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

As the era of ‘‘Big Data’’ is coming, the processing of large-
scale graph-structured data has becoming increasingly important
in a wide range of domains such as social networks, recommen-
dation systems and data analytics. To address these challenges, a
number of graph analytic systems have emerged, e.g., Pregel [1],
GraphLab [2], GraphX [3] and GridGraph [4]. Most existing graph
processing systems employ synchronous or asynchronous modes,
and usually follow the ‘‘think like a vertex (TLAV)’’ philosophy,
which address the iterative graph computation problems by ver-
tex centric or edge centric approaches.

However, these distributed systems are not suited for all pur-
poses, and sometimes even suffer from low access locality and
poor performance [5] due to different realistic characteristics,
like power-law distribution [6] or long hops [7]. Moreover, some
graph applications, like BP neutral network often needs thou-
sands of iterations [8], which result serious performance degra-
dation.

To overcome these shortcomings, some researchers proposed
a hybrid approach to leverage the advantages of both synchronous
and asynchronous models, such as Mizan [9], PowerSwitch [10]
and GRACE [11], which follows a heuristic workload migration
algorithm based on runtime metrics, or supporting for both two

∗ Corresponding author.
E-mail address: hengchen@xjtu.edu.cn (H. Chen).

modes by separating computation logic and scheduling orders.
However, these dynamic swapping systems basically follow an
‘‘Afterwards Controlling’’ approach, which lacks considerations of
access locality, and are often demonstrated not worth the high
overhead [12]. Worse even, the flexibility for mode switching can
also confuse programmers in selection, which may lead to infinite
running for graph algorithms.

Moreover, in response to TLAV limitations and low access
locality, some researchers adopt a coarse-grained granularity for
storage and computation [5,13,14], which is modest between
vertex and graph. Some works employ high quality partition algo-
rithms [15], which have a small edges cut and similar communi-
cation workloads between tasks, as a ‘‘Beforehand Processing’’ ap-
proach, can efficiently improve unbalanced workload, especially
for some slow converged applications or graphs with ‘‘super-
vertex’’. However, existing graph processing systems are primar-
ily based on the random hash based partitioning algorithm [14],
which partitions original graph into disconnected components
based on vertex or edge ids, and causes large redundant com-
munication across partitions. Moreover, a well-balanced graph
partition by high quality underlying algorithms can even lead to
a decrease of the overall performance in existing systems [15].

This paper proposes a novel partition-based hybrid hierarchi-
cal graph computation approach, called H2Pregel, which leverages
the advantages of both synchronous and asynchronous mode,
and performs local computations on interior edges to avoid in-
efficient computations and network traffic between tasks. More-
over, H2Pregel leverages the high proportion of interior messages

https://doi.org/10.1016/j.future.2019.09.021
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.09.021
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.09.021&domain=pdf
mailto:hengchen@xjtu.edu.cn
https://doi.org/10.1016/j.future.2019.09.021


16 Q. Liu, X. Dong, H. Chen et al. / Future Generation Computer Systems 104 (2020) 15–31

hierarchically by sub-supersteps to accelerate the convergence.
We have built H2Pregel on Giraph, a classic open source sys-
tem based on Pregel, and constructed an implementation system
called H2Giraph. The evaluation results on large-scale graphs
show that, compared with Pregel in three partition algorithms,
H2Pregel can achieve average speedups by 1.12–4.52 times and
can reduce average communication messages by 23.5%–55.5%,
and can reduce average supersteps by 15.8%–82.0%.

The remaining paper is organized as follows. Section 2 de-
scribes the related works on graph computation. Section 3 intro-
duces the motivation of H2Pregel. The computation abstraction
and system implementation details are described in Sections 4
and 5, respectively. Section 6 evaluates the experiments results.
Finally, we conclude this paper in Section 7.

2. Related works

Graph theory has been applied in a wide range of fields, such
as geometry, computer science, decision systems and information
science. Some researchers employ graph-theoretic approaches as
a catalyst for novel concepts and cloud applications, such as
cybernetics in social networks [16], network function virtualiza-
tion in edge computing [17] and multi-objective scheduling for
scientific workflow [18]. Moreover, some works extend graph
theory into decision-making systems by a mathematical modeling
approach, such as rough fuzzy digraphs [19], intuitionistic fuzzy
graphs [20] and m-polar fuzzy matroids [21].

In general, existing large-scale graph processing systems can
be categorized into two classes: synchronous and asynchronous
[12]. Most synchronous approaches expresses the computation as
a sequence of synchronous iterations, which follows the
Mapreduce-style [22], like PEGASUS [23] and Hadi [24], or BSP
(Bulk Synchronous Parallel) [25] based systems, such as Pregel,
Hama [26], GPS [27] and Giraph [28] that applies ‘‘Scatter–Gather
(SG)’’ [29] programming model, force all tasks join the same
superstep and suffer from the high, fixed cost of the global syn-
chronization barrier until a global convergence is reached, or the
number of supersteps exceeds the threshold. These synchronous
approaches can reduce overheads caused by consistency and
data race, but also introduces redundant iterations and workload
imbalance problems, especially in some sequential scenarios,
each iteration lasts as long as the slowest task and leads severe
performance degradation, which are the so-called ‘‘data skew’’ or
‘‘stragglers’’ problems [30].

In contrast, asynchronous approach systems eliminate the
global barrier and the ‘‘straggler’’ problem, but come at the
expense of added complexity from distributed scheduling and
locking mechanism to maintain data consistency. For instance,
GraphLab implements a shared memory model and takes a fine-
grained distributed lock to avoid concurrent conflicts between
vertex and adjacent neighbors, but the additional complexity
in consistency model and nondeterministic execution procedure
also result difficulties for following programmers [31].

Some researchers propose a hybrid approach to leverage the
advantages of both two execution models. PowerSwitch [10] con-
stantly collects runtime execution statistics and leverages a set
of heuristics to predict future performance and determine which
mode could be profitable. GRACE [11] decouples the dependency
between application logic and execution policies, and provides
a carefully designed and implemented parallel execution engine
for both synchronous and user specified built-in asynchronous
execution policies. Mizan [9] achieves efficient dynamic load
balancing by fine-grained vertex migration and distributed hash
table (DHT) for looking up service and better adapt to changes
in computing needs. Finishing Computation Serially (FCS) [5]
monitors the size of the ‘‘active’’ graph at the end of execution,

if it becomes small enough to fit in the memory of a single
machine, an aggregation operation is triggered to collect the
active graph to the master and performs a serial computation. FCS
can eliminate almost 20%–60% supersteps. ExPregel [32] performs
local synchronization for vertices of intra-node tasks to reduce
communication between machines. GiraphUC [33] proposes a
barrierless asynchronous parallel (BAP) model, which reduces
both messages staleness and global synchronization.

Some researchers propose a coarse-grained granularity ap-
proach to provide a higher level abstraction and reduce the num-
ber of messages transmitted and buffered across supersteps. Stor-
ing Edges At Subvertices (SEAS) [5] optimizes computation by
merging sets of sub-vertices to form ‘‘super vertices’’, and incurs
communication between sub-vertices and super vertices instead
of sending adjacency lists. Giraph++ [13] provides a subgraph-
centric framework and follows a ‘‘think like a graph’’ philosophy,
which dramatically outperforms ‘‘think like a vertex’’ framework
by orders of magnitude both in computation and message traffic.
PathGraph [14] partitions the graph at a ‘‘path’’ level granularity,
with each partition represented as a forward tree and a reverse
tree. Moreover, PathGraph follows a path-centric model in both
computation and storage, and ‘‘Scatter–Gather (SG)’’ program-
ming model, which utilizes locality through reduced memory
usage and efficient caching.

Some researchers consider improving the performance
through high quality partition algorithms. PAGE [15] proposes
a partition aware graph computation engine to efficiently sup-
port computation tasks with different partitioning qualities, and
handle both local and remote incoming messages adaptively
based on partition-related runtime statistics. Xu [34] proposes
a novel adaptive streaming graph partitioning approach to cope
with heterogeneous environment, which formally models the
heterogeneous computing environment with the consideration of
the unbalance of computing and communicating ability for each
node, and offers a new graph partitioning objective function to
minimize the job execution time.

Our works is similar to the works in [13,32], but with some
significant differences. Most similar papers mainly follow a hy-
brid approach, while this paper proposes a hybrid and hierarchi-
cal approach, which introduces the factor of partition algorithm
and employs a slight synchronization between intra-task parallel
threads instead of high synchronization overheads between tasks.
Meanwhile, we also propose a user-defined option to control the
number of local processing threads. Moreover, H2Pregel provides
better reusability that mostly retains the programming interface
and fault tolerance model of Pregel, so that traditional vertex-
based graph algorithms can be trivially ported, which avoids the
complexity in writing subgraph-based algorithms.

3. Problem statement

3.1. Redundant supersteps

Fig. 1 shows the number of active vertices in each super-
step of Connected Components (CC) algorithm on Web-BerkStan
dataset, which totally costs 704 supersteps. As shown in Fig. 1,
the number of active vertices exhibits a power-law distribution,
and more than 97.6% vertices have already converged after 20
supersteps, which take only 2.84% of total number. Generally
speaking, 2.4% vertices cost more than 97.2% supersteps, which
lead significant redundant synchronization overheads and low
efficiency computation.



Download English Version:

https://daneshyari.com/en/article/13431204

Download Persian Version:

https://daneshyari.com/article/13431204

Daneshyari.com

https://daneshyari.com/en/article/13431204
https://daneshyari.com/article/13431204
https://daneshyari.com

