
ARTICLE IN PRESS

JID: CAG [m5G; November 8, 2019;23:16]

Computers & Graphics xxx (xxxx) xxx

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

Multi-agent parallel hierarchical path finding in navigation meshes

(MA-HNA

∗) �

Vahid Rahmani , Nuria Pelechano

∗Q1

Universitat Politcnica de Catalunya, Barcelona, 08034, Spain

a r t i c l e i n f o

Article history:

Received 28 March 2019

Revised 26 October 2019

Accepted 28 October 2019

Available online xxx

Keywords:

Multi-agent path finding

Hierarchical search

Parallel path finding

a b s t r a c t

One of the main challenges in video games is to compute paths as efficiently as possible for groups

of agents. As both the size of the environments and the number of autonomous agents increase, it be-

comes harder to obtain results in real time under the constraints of memory and computing resources.

Hierarchical approaches, such as HNA

∗ (Hierarchical A

∗ for Navigation Meshes) can compute paths more

efficiently, although only for certain configurations of the hierarchy. For other configurations, the method

suffers from a bottleneck in the step that connects the Start and Goal positions with the hierarchy. This

bottleneck can drop performance drastically. In this paper we present two approaches to solve the HNA

∗

bottleneck and thus obtain a performance boost for all hierarchical configurations. The first method relies

on further memory storage, and the second one uses parallelism on the GPU. Our comparative evaluation

shows that both approaches offer speed-ups as high as 9x faster than A

∗, and show no limitations based

on hierarchical configuration. Finally we show how our CUDA based parallel implementation of HNA

∗ for

multi-agent path finding can now compute paths for over 500K agents simultaneously in real-time, with

speed-ups above 15x faster than a parallel multi-agent implementation using A

∗.

© 2019 Published by Elsevier Ltd.

1. Introduction 1

Path planning for multi-agents in large virtual environments is 2

a central problem in the fields of robotics, video games, and crowd 3

simulation. In the case of video games, the need for highly efficient 4

techniques is crucial as modern games place high demands on CPU 5

and memory usage. 6

Path finding should provide visually convincing paths for one or 7

many autonomous agents in real time. Typically, it is not necessary 8

to obtain the optimal path for all agents, instead use paths that 9

look convincing to the viewer and can be computed within strict 10

time constraints (to support 25 frames per second considering all 11

other computations required in a game such as rendering, physics 12

simulation, and AI). 13

The problem of path finding can be separated from local move- 14

ment, so that path finding provides the sequence of cells to cross 15

in the navigation mesh, and other methods can be used to set 16

way-points and to handle collision avoidance against other moving 17

agents in the cell [1] . 18

� This article was recommended for publication by Prof A. Jacobson.
∗ Corresponding author.

E-mail addresses: v.rahmani2015@gmail.com (V. Rahmani), npelechano@cs.upc.

edu , npelechano@lsi.upc.edu (N. Pelechano).

In this paper, we focus on abstraction hierarchies applied to 19

multi-agent path-finding to improve performance. A general nota- 20

tion consists of labelling the hierarchy as levels or layers in as- 21

cending order, with the lowest, L0, being the un-abstracted map in 22

the game space, and consecutive layers numbered L1, L2 and so on 23

representing higher levels of abstraction. The key idea consists of 24

performing a search at a high-level, which is then ”filled in” with 25

more refined sections of the path at lower levels, until a complete 26

path is specified. 27

Typically a high-level solution can be rapidly calculated, and the 28

challenge lies in inserting the specific Start (S) and Goal (G) posi- 29

tions to connect them with the high-level graph. The literature in 30

this field shows that the S/G (Start/Goal) connection step can be- 31

come a bottleneck in both 2D grids [2] and Navigation Meshes [3] . 32

There are many techniques that have shown performance im- 33

provements for the case of 2D regular meshes without a large 34

memory footprint [4,5] . However, general navigation meshes con- 35

sisting of convex polygons of different com plexity present more 36

challenges due to their irregular nature (i.e. not all the cells have 37

the same size and edge length) [6] . In this work we propose 38

two approaches to eliminate the existing bottleneck in hierar- 39

chical path finding for general navigation meshes, and evaluate 40

their advantages and limitations in terms of both memory usage 41

and performance improvements. The proposed solutions provide a 42

large speed up for all configurations of the hierarchy, and makes 43

https://doi.org/10.1016/j.cag.2019.10.006

0097-8493/© 2019 Published by Elsevier Ltd.

Please cite this article as: V. Rahmani and N. Pelechano, Multi-agent parallel hierarchical path finding in navigation meshes (MA-HNA*),

Computers & Graphics, https://doi.org/10.1016/j.cag.2019.10.006

https://doi.org/10.1016/j.cag.2019.10.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
mailto:v.rahmani2015@gmail.com
mailto:npelechano@cs.upc.edu
mailto:npelechano@lsi.upc.edu
https://doi.org/10.1016/j.cag.2019.10.006
https://doi.org/10.1016/j.cag.2019.10.006

2 V. Rahmani and N. Pelechano / Computers & Graphics xxx (xxxx) xxx

ARTICLE IN PRESS

JID: CAG [m5G; November 8, 2019;23:16]

our new HNA

∗ algorithms viable for even larger environments 44

than before. Our solution can also be combined with multi-agent 45

simulation, to handle several hundred thousand agents computing 46

paths simultaneously in real time. 47

2. Problem formulation 48

A world map is typically given as a polygon soup. In order to 49

have agents navigating a world map, it is necessary to find a rep- 50

resentation of the walkable space. This can be done with a navi- 51

gation mesh, which represents the walkable space as a collection 52

of convex polygons called cells (could be triangles or polygons of 53

more than three sides), where borders between adjacent cells are 54

called portals [7] . Agents can move within any two points of a cell 55

or cross portals to move between adjacent cells, without collid- 56

ing with the static obstacle borders of a cell. This representation 57

can be expressed as a graph G = (N, E) , where the collection of 58

cells or convex polygons are the nodes or vertices of the graph 59

N = < p 0 , p 1 , . . . , p n >, and the portals are the edges E , with each 60

edge e ij , corresponding to the edge between two adjacent polygons 61

p i and p j . The cost of an edge c (e ij)is calculated as the distance be- 62

tween the center of polygon p i to the center of polygon p j , and 63

thus it is always a positive value. Path-finding involves finding a 64

path P = 〈 S, . . . , u, . . . , v , . . . , G 〉 which is a sequence of nodes con- 65

nected by edges, from the starting position S to the goal position 66

G. The cost of a path c (P) is the sum of all the costs assigned to 67

the edges along the path P , and since all edges costs are positive 68

values, the cost of a path will always be a positive value. The short- 69

est path between S and G is the path of minimum cost among all 70

possible paths. A

∗ performs an informed graph search, by comput- 71

ing for each node being explored the function f (x) = c(x) + h (x) , 72

where c (x) is the current cost from S to node x , and h (x) is the 73

heuristic that estimates the optimal cost of the path from x to G 74

[8] . When dealing with maps, h (x), can be computed as the Eu- 75

clidean distance between the position of the center of node x , and 76

the position of the center of node G . With this heuristic, A

∗ can 77

always find the optimal path, which is the path of minimum dis- 78

tance. 79

Each level of the hierarchy Lx , x > 0, is represented by a new 80

graph G x which is created by merging μ connected nodes from 81

G x −1 (the value of μ is decided by the user). The new graph G x = 82

(N x , E x) , consists of a set of nodes N x = 〈 n 0 x , n
1
x , . . . , n

m

x 〉 , where each 83

node in G x is a subgraph of μ connected nodes from G x −1 , so that 84

n i x = 〈 n j
x −1

, n k
x −1

, . . . , n l
x −1

〉 . Edges E x in G x are the subset of edges 85

from G x −1 that connect two nodes n s x and n d x , where s � = d . 86

Definition 2.1. An Inter-edge , ιsd
x , in G x is an edge e ij from G x −1 87

that connects two nodes n i
x −1

and n
j
x −1

, such that n i
x −1

is inside 88

n s x , n
j
x −1

is inside n d x , and s � = d . 89

For those edges e ij from G x −1 that connect two nodes n i
x −1

and 90

n
j
x −1

, such that both n i
x −1

and n
j
x −1

are inside n s x , they become in- 91

ternal edges of node n s x . Therefore, there is no loss of connectivity 92

between G x −1 and G x , since all the set of edges in E x −1 are now 93

either internal edges of nodes n s x in G x or inter-edges in G x . 94

These concepts are shown in Fig. 1 . In the case of L1, the 95

merged nodes from L0 are polygons of the navigation mesh. Fig. 2 96

shows an example of a simple navigation mesh from level L0 to L3. 97

Colors are used to represent nodes at each level, so we can appre- 98

ciate how each navigation mesh polygon turns into a node at L0, 99

and then several connected polygons from L0 are merged in one 100

larger node at L1, and similarly for L2. 101

The graph G x contains a partition of G x −1 , with nodes at Lx be- 102

ing groups of adjacent nodes from L (x − 1) , and edges E x being a 103

subset of the edges of E x −1 . Each node n x can be traversed by find- 104

ing an internal path between a pair of inter-edges . Such internal 105

Fig. 1. Example of HNG with two levels and μ = 4. The orange circles and dis-

continuous links represent the temporal nodes and edges created after linking Start

and Goal points to the HNG. This temporal graph is where the HNA ∗ runs [3] .

paths are represented by a sequence of polygons and can be pre- 106

computed and stored. 107

Definition 2.2. An Intra-edge , π s (dk)
x = 〈 p 0 , p 1 , . . . , p k 〉 , is a se- 108

quence of polygons from G 0 that represent the optimal path to 109

traverse a node n s x between two inter-edges ιsd
x and ιsk

x . Therefore, 110

π s (dk)
x = optimalPath (ιsd

x , ι
sk
x) . Its weight is computed as the sum of 111

costs of the edges e ij along the path, c(π s (dk)
x) = c(e 01) + c(e 12) + 112

. . . + c(e (k −1) k) , where e ij is the edge between nodes p i and p j . 113

A node n s x will have an intra-edge for each pair of inter-edges . 114

In order to find a high level path, we need a Hierarchical Navi- 115

gation Graph, HNG x = (V ′ x , E
′
x) , which captures the connectivity of 116

G x given by the relationships between inter-edges and intra-edges . 117

In HNG x , the vertices are all the inter-edges in the partition rep- 118

resented by G x , V
′
x = 〈 ιsd

x , ι
dk
x , . . . , ι

lm

x 〉 , and the edges, E ′ x are intra- 119

edges , πd(sk)
x connecting each pair of inter-edges , for which a path 120

exists. 121

Note that HNG x maintains the connectivity of the navigation 122

mesh, but in a more compact representation, where only some 123

edges are kept as nodes in HNG x (those inter-edges , which de- 124

pend on the hierarchical level L and the merging factor μ), and 125

the shortest paths at L 0 between those nodes are precomputed as 126

intra-edges . Therefore HNG x is built in a way that guarantees that 127

the connectivity between polygons at L0 is kept regardless of the 128

hierarchical configuration. 129

If a path, P 0 = 〈 p S , p 1 , p 2 , . . . , p G 〉 , exists at G 0 , then there will 130

be a path at level Lx . Computing path finding in HNG x gives as a re- 131

sult the path P x (S, G) = 〈 π S
temp , π

s (dk)
x , π k (sq)

x , . . . , π r((m −1) m)
x πG

temp 〉 . 132

P x (S , G) is the high level path. The temporal paths, π S
temp and πG

temp , 133

were created during the connect S and G steps, which computes 134

a path at level L0 for the subgraph represented by the high level 135

node S, and similarly for G. Therefore π S
temp = 〈 p s , p 0 , p 1 , . . . , p n 〉 136

where p n is a polygon with one of the edges being the inter-edge 137

that connects p n with the first polygon in π s (dk)
x . Extracting the se- 138

quence of polygons from each intra-edge π i (jk)
x we obtain the full 139

sequence of polygons to traverse the navigation mesh between S 140

and G (Proof in appendix A). 141

3. Related work 142

The most common approaches to speed-up path-finding, consist 143

of either building some abstraction or hierarchy where path finding 144

can be performed with smaller graphs (independently of the path- 145

finding algorithm used), or else modifying the A

∗ algorithm to gain 146

Please cite this article as: V. Rahmani and N. Pelechano, Multi-agent parallel hierarchical path finding in navigation meshes (MA-HNA*),

Computers & Graphics, https://doi.org/10.1016/j.cag.2019.10.006

https://doi.org/10.1016/j.cag.2019.10.006

Download English Version:

https://daneshyari.com/en/article/13431532

Download Persian Version:

https://daneshyari.com/article/13431532

Daneshyari.com

https://daneshyari.com/en/article/13431532
https://daneshyari.com/article/13431532
https://daneshyari.com

