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a b s t r a c t 

One of the main challenges in video games is to compute paths as efficiently as possible for groups 

of agents. As both the size of the environments and the number of autonomous agents increase, it be- 

comes harder to obtain results in real time under the constraints of memory and computing resources. 

Hierarchical approaches, such as HNA 

∗ (Hierarchical A 

∗ for Navigation Meshes) can compute paths more 

efficiently, although only for certain configurations of the hierarchy. For other configurations, the method 

suffers from a bottleneck in the step that connects the Start and Goal positions with the hierarchy. This 

bottleneck can drop performance drastically. In this paper we present two approaches to solve the HNA 

∗

bottleneck and thus obtain a performance boost for all hierarchical configurations. The first method relies 

on further memory storage, and the second one uses parallelism on the GPU. Our comparative evaluation 

shows that both approaches offer speed-ups as high as 9x faster than A 

∗, and show no limitations based 

on hierarchical configuration. Finally we show how our CUDA based parallel implementation of HNA 

∗ for 

multi-agent path finding can now compute paths for over 500K agents simultaneously in real-time, with 

speed-ups above 15x faster than a parallel multi-agent implementation using A 

∗. 

© 2019 Published by Elsevier Ltd. 

1. Introduction 1 

Path planning for multi-agents in large virtual environments is 2 

a central problem in the fields of robotics, video games, and crowd 3 

simulation. In the case of video games, the need for highly efficient 4 

techniques is crucial as modern games place high demands on CPU 5 

and memory usage. 6 

Path finding should provide visually convincing paths for one or 7 

many autonomous agents in real time. Typically, it is not necessary 8 

to obtain the optimal path for all agents, instead use paths that 9 

look convincing to the viewer and can be computed within strict 10 

time constraints (to support 25 frames per second considering all 11 

other computations required in a game such as rendering, physics 12 

simulation, and AI). 13 

The problem of path finding can be separated from local move- 14 

ment, so that path finding provides the sequence of cells to cross 15 

in the navigation mesh, and other methods can be used to set 16 

way-points and to handle collision avoidance against other moving 17 

agents in the cell [1] . 18 

� This article was recommended for publication by Prof A. Jacobson. 
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E-mail addresses: v.rahmani2015@gmail.com (V. Rahmani), npelechano@cs.upc. 

edu , npelechano@lsi.upc.edu (N. Pelechano). 

In this paper, we focus on abstraction hierarchies applied to 19 

multi-agent path-finding to improve performance. A general nota- 20 

tion consists of labelling the hierarchy as levels or layers in as- 21 

cending order, with the lowest, L0, being the un-abstracted map in 22 

the game space, and consecutive layers numbered L1, L2 and so on 23 

representing higher levels of abstraction. The key idea consists of 24 

performing a search at a high-level, which is then ”filled in” with 25 

more refined sections of the path at lower levels, until a complete 26 

path is specified. 27 

Typically a high-level solution can be rapidly calculated, and the 28 

challenge lies in inserting the specific Start (S) and Goal (G) posi- 29 

tions to connect them with the high-level graph. The literature in 30 

this field shows that the S/G (Start/Goal) connection step can be- 31 

come a bottleneck in both 2D grids [2] and Navigation Meshes [3] . 32 

There are many techniques that have shown performance im- 33 

provements for the case of 2D regular meshes without a large 34 

memory footprint [4,5] . However, general navigation meshes con- 35 

sisting of convex polygons of different com plexity present more 36 

challenges due to their irregular nature (i.e. not all the cells have 37 

the same size and edge length) [6] . In this work we propose 38 

two approaches to eliminate the existing bottleneck in hierar- 39 

chical path finding for general navigation meshes, and evaluate 40 

their advantages and limitations in terms of both memory usage 41 

and performance improvements. The proposed solutions provide a 42 

large speed up for all configurations of the hierarchy, and makes 43 
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our new HNA 

∗ algorithms viable for even larger environments 44 

than before. Our solution can also be combined with multi-agent 45 

simulation, to handle several hundred thousand agents computing 46 

paths simultaneously in real time. 47 

2. Problem formulation 48 

A world map is typically given as a polygon soup. In order to 49 

have agents navigating a world map, it is necessary to find a rep- 50 

resentation of the walkable space. This can be done with a navi- 51 

gation mesh, which represents the walkable space as a collection 52 

of convex polygons called cells (could be triangles or polygons of 53 

more than three sides), where borders between adjacent cells are 54 

called portals [7] . Agents can move within any two points of a cell 55 

or cross portals to move between adjacent cells, without collid- 56 

ing with the static obstacle borders of a cell. This representation 57 

can be expressed as a graph G = (N, E) , where the collection of 58 

cells or convex polygons are the nodes or vertices of the graph 59 

N = < p 0 , p 1 , . . . , p n >, and the portals are the edges E , with each 60 

edge e ij , corresponding to the edge between two adjacent polygons 61 

p i and p j . The cost of an edge c ( e ij )is calculated as the distance be- 62 

tween the center of polygon p i to the center of polygon p j , and 63 

thus it is always a positive value. Path-finding involves finding a 64 

path P = 〈 S, . . . , u, . . . , v , . . . , G 〉 which is a sequence of nodes con- 65 

nected by edges, from the starting position S to the goal position 66 

G. The cost of a path c ( P ) is the sum of all the costs assigned to 67 

the edges along the path P , and since all edges costs are positive 68 

values, the cost of a path will always be a positive value. The short- 69 

est path between S and G is the path of minimum cost among all 70 

possible paths. A 

∗ performs an informed graph search, by comput- 71 

ing for each node being explored the function f (x ) = c(x ) + h (x ) , 72 

where c ( x ) is the current cost from S to node x , and h ( x ) is the 73 

heuristic that estimates the optimal cost of the path from x to G 74 

[8] . When dealing with maps, h ( x ), can be computed as the Eu- 75 

clidean distance between the position of the center of node x , and 76 

the position of the center of node G . With this heuristic, A 

∗ can 77 

always find the optimal path, which is the path of minimum dis- 78 

tance. 79 

Each level of the hierarchy Lx , x > 0, is represented by a new 80 

graph G x which is created by merging μ connected nodes from 81 

G x −1 (the value of μ is decided by the user). The new graph G x = 82 

(N x , E x ) , consists of a set of nodes N x = 〈 n 0 x , n 
1 
x , . . . , n 

m 

x 〉 , where each 83 

node in G x is a subgraph of μ connected nodes from G x −1 , so that 84 

n i x = 〈 n j 
x −1 

, n k 
x −1 

, . . . , n l 
x −1 

〉 . Edges E x in G x are the subset of edges 85 

from G x −1 that connect two nodes n s x and n d x , where s � = d . 86 

Definition 2.1. An Inter-edge , ιsd 
x , in G x is an edge e ij from G x −1 87 

that connects two nodes n i 
x −1 

and n 
j 
x −1 

, such that n i 
x −1 

is inside 88 

n s x , n 
j 
x −1 

is inside n d x , and s � = d . 89 

For those edges e ij from G x −1 that connect two nodes n i 
x −1 

and 90 

n 
j 
x −1 

, such that both n i 
x −1 

and n 
j 
x −1 

are inside n s x , they become in- 91 

ternal edges of node n s x . Therefore, there is no loss of connectivity 92 

between G x −1 and G x , since all the set of edges in E x −1 are now 93 

either internal edges of nodes n s x in G x or inter-edges in G x . 94 

These concepts are shown in Fig. 1 . In the case of L1, the 95 

merged nodes from L0 are polygons of the navigation mesh. Fig. 2 96 

shows an example of a simple navigation mesh from level L0 to L3. 97 

Colors are used to represent nodes at each level, so we can appre- 98 

ciate how each navigation mesh polygon turns into a node at L0, 99 

and then several connected polygons from L0 are merged in one 100 

larger node at L1, and similarly for L2. 101 

The graph G x contains a partition of G x −1 , with nodes at Lx be- 102 

ing groups of adjacent nodes from L (x − 1) , and edges E x being a 103 

subset of the edges of E x −1 . Each node n x can be traversed by find- 104 

ing an internal path between a pair of inter-edges . Such internal 105 

Fig. 1. Example of HNG with two levels and μ = 4. The orange circles and dis- 

continuous links represent the temporal nodes and edges created after linking Start 

and Goal points to the HNG. This temporal graph is where the HNA ∗ runs [3] . 

paths are represented by a sequence of polygons and can be pre- 106 

computed and stored. 107 

Definition 2.2. An Intra-edge , π s (dk ) 
x = 〈 p 0 , p 1 , . . . , p k 〉 , is a se- 108 

quence of polygons from G 0 that represent the optimal path to 109 

traverse a node n s x between two inter-edges ιsd 
x and ιsk 

x . Therefore, 110 

π s (dk ) 
x = optimalPath (ιsd 

x , ι
sk 
x ) . Its weight is computed as the sum of 111 

costs of the edges e ij along the path, c(π s (dk ) 
x ) = c(e 01 ) + c(e 12 ) + 112 

. . . + c(e (k −1) k ) , where e ij is the edge between nodes p i and p j . 113 

A node n s x will have an intra-edge for each pair of inter-edges . 114 

In order to find a high level path, we need a Hierarchical Navi- 115 

gation Graph, HNG x = (V ′ x , E 
′ 
x ) , which captures the connectivity of 116 

G x given by the relationships between inter-edges and intra-edges . 117 

In HNG x , the vertices are all the inter-edges in the partition rep- 118 

resented by G x , V 
′ 
x = 〈 ιsd 

x , ι
dk 
x , . . . , ι

lm 

x 〉 , and the edges, E ′ x are intra- 119 

edges , πd(sk ) 
x connecting each pair of inter-edges , for which a path 120 

exists. 121 

Note that HNG x maintains the connectivity of the navigation 122 

mesh, but in a more compact representation, where only some 123 

edges are kept as nodes in HNG x (those inter-edges , which de- 124 

pend on the hierarchical level L and the merging factor μ), and 125 

the shortest paths at L 0 between those nodes are precomputed as 126 

intra-edges . Therefore HNG x is built in a way that guarantees that 127 

the connectivity between polygons at L0 is kept regardless of the 128 

hierarchical configuration. 129 

If a path, P 0 = 〈 p S , p 1 , p 2 , . . . , p G 〉 , exists at G 0 , then there will 130 

be a path at level Lx . Computing path finding in HNG x gives as a re- 131 

sult the path P x (S, G ) = 〈 π S 
temp , π

s (dk ) 
x , π k (sq ) 

x , . . . , π r((m −1) m ) 
x πG 

temp 〉 . 132 

P x ( S , G ) is the high level path. The temporal paths, π S 
temp and πG 

temp , 133 

were created during the connect S and G steps, which computes 134 

a path at level L0 for the subgraph represented by the high level 135 

node S, and similarly for G. Therefore π S 
temp = 〈 p s , p 0 , p 1 , . . . , p n 〉 136 

where p n is a polygon with one of the edges being the inter-edge 137 

that connects p n with the first polygon in π s (dk ) 
x . Extracting the se- 138 

quence of polygons from each intra-edge π i ( jk ) 
x we obtain the full 139 

sequence of polygons to traverse the navigation mesh between S 140 

and G (Proof in appendix A). 141 

3. Related work 142 

The most common approaches to speed-up path-finding, consist 143 

of either building some abstraction or hierarchy where path finding 144 

can be performed with smaller graphs (independently of the path- 145 

finding algorithm used), or else modifying the A 

∗ algorithm to gain 146 
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