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a b s t r a c t 

Three methods developed for determining surface curvature in volumetric data are described, including 

one convolution-based method, one fitting-based method, and one method that uses normal estimates 

to directly determine curvature. Additionally, a study of the accuracy and computational performance of 

these methods and prior methods is presented. The study considers synthetic data, noise-added synthetic 

data, and real data. Sample volume renderings using curvature-based transfer functions, where curvatures 

were determined with the methods, are also exhibited. 

© 2019 Published by Elsevier Ltd. 

1. Introduction 1 

Surface curvature is a common shape descriptor that is used in 2 

a wide range of applications including isosurface extraction [1] and 3 

visualization [2] , molecular field feature extraction and analysis [3] , 4 

location of features in seismic data [4,5] , object recognition [6] and 5 

segmentation [7] , analysis of anatomical abnormalities [8] , direct 6 

volume rendering [9,10] , contour enhancement [10] , etc. Curva- 7 

ture, simply put, describes the amount by which a surface “bends”8 

away from its tangent plane [11] , with the magnitude indicating 9 

the amount of bending and the sign indicating the direction of 10 

the bending relative to the tangent plane’s normal. The magni- 11 

tude and sign may differ depending on the direction they are mea- 12 

sured within the tangent plane. However, the directions in which 13 

the maximum and minimum curvatures occur are always orthog- 14 

onal. We denote the maximum and minimum curvature values as 15 

κ1 and κ2 , respectively. κ1 and κ2 are the principal curvatures , and 16 

the directions in which they occur are the principal directions ( [12] , 17 

Chapter 2). The principal curvatures are two commonly used cur- 18 

vature values. Additionally, two other curvature quantities used in 19 

some tasks, including direct volume rendering [10] and segmenta- 20 

tion [7] , can be computed from these two: the Gaussian curvature, 21 

H = κ1 × κ2 , and the mean curvature, K = (κ1 + κ2 ) / 2 . 22 

Here, our focus is on the determination of the principal curva- 23 

tures at each point within a volume, where the curvature values at 24 

a point describe the bending, at that point, of the implicit surface 25 
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corresponding to the isosurface defined by the value of the point. 26 

Each volume thus potentially contains a large number of surfaces, 27 

depending on the number of values exhibited within the volume. 28 

Mathematically, such principal curvatures can be found as the first 29 

two eigenvalues of ∇ 

�
 n , where � n is the surface normal at the point 30 

(i.e., the normalized gradient of the volume). Since this definition 31 

of curvature makes use of first and second derivatives of a mathe- 32 

matical function that describes a surface, using it to calculate cur- 33 

vature in discrete data, such as in volumetric datasets, requires 34 

strategies to directly estimate these derivatives or closely-related 35 

quantities. (N.B., some methods, described later, estimate closely- 36 

related quantities rather than the derivatives themselves). More- 37 

over, for curvature determination in real, sensed data the necessary 38 

estimations are further complicated by the presence of noise. 39 

In this paper, we describe three methods (two primary meth- 40 

ods and a third method that is a variant of one of the two) de- 41 

veloped to determine curvature in regular rectilinear grid volu- 42 

metric datasets (here forward: “volume data”). These methods are 43 

adapted from methods for determining curvature in range images. 44 

In addition, we examine the accuracy and computational perfor- 45 

mance of these methods and of seven classic, existing methods 46 

[7,9,10,13–16] . 47 

Our examinations provide extensive comparison of curvature 48 

determination method accuracies when operating on noise-free 49 

and noise-added synthetic volume data and on real, sensed vol- 50 

ume data. Prior work of Wernersson et al. [15] also compared 51 

some such curvature determination methods in terms of accuracy. 52 

However, unlike the Wernersson et al. work, which only compared 53 

methods based on their curvature formulations and excluded 54 

other differences in processing, our studies here consider entire 55 
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Fig. 1. Renderings of f (x, y, z) = x 2 + y 2 + z 2 − x 4 − y 4 − z 4 using curvature-based 

color transfer functions based on a variety of curvature quantities. Columns from 

left-to-right: κ1 , κ2 , and H . On the top row, exactly computed curvatures were used. 

On the bottom row, curvatures were perturbed by either +10% or -10% of the curva- 

ture value at each point, demonstrating that even a modest level of deviation from 

correct curvatures may result in notable changes in renderings. 

methodologies, including specific filters and smoothing operations 56 

used in each method. Additionally, we include here evaluation 57 

of several additional determination methods and analysis of the 58 

computational performance of all the methods. This work is an 59 

extension of our previous conference paper [17] . Here, two addi- 60 

tional curvature determination methods and additional datasets 61 

are considered. Additional analysis has also been performed and 62 

integrated here, including an evaluation of the impact of variations 63 

in parameter selection as well as plots and evaluations of global 64 

average error values. Our work here also provides, for comparison, 65 

a number of direct volume renderings (DVRs) produced using the 66 

curvature outputs of each determination method. Such renderings 67 

have previously been noted for their ability to enhance the utility 68 

of volume rendering [10] , however, as shown in Fig. 1 , even a 69 

modest amount of deviation from the correct curvature values can 70 

markedly impact rendering quality. (A rendering similar to the top 71 

part of Fig. 1 was previously presented in [10] .) Our comparison 72 

renderings thus provide a visual indication of how selection of 73 

the curvature determination method can impact the common 74 

real-world task of volume visualization. To our knowledge, our 75 

work here is the most extensive study on the impact of the 76 

curvature determination method on rendering quality when using 77 

curvature-based direct transfer functions. 78 

This paper is organized as follows. Section 2 ( Section 2 ) pro- 79 

vides background information on surface curvature. Existing meth- 80 

ods to determine curvature in volume data are also discussed. 81 

Section 3 presents the three volume extensions of existing meth- 82 

ods for determining curvature in range images. Section 4 describes 83 

performance comparisons of these methods and the prior meth- 84 

ods. Section 5 presents visual comparisons of DVRs produced us- 85 

ing curvature-based color transfer functions where curvatures were 86 

determined by said methods. Section 6 concludes the paper. 87 

2. Previous work 88 

Here, we describe curvature calculation generally as well as 89 

methods previously developed for determining curvature in vol- 90 

ume datasets. First, we introduce our notation. (u, v , w ) denotes 91 

a grid (or sample) point within the volume, where 0 ≤ u < N u , 92 

0 ≤v < N v , 0 ≤w < N w 

for a volume of size N u ×N v ×N w 

. The value at 93 

point (u, v , w ) is denoted f (u, v , w ) ; f represents the underlying 94 

function that generates the volume. Consequently, f u represents the 95 

partial derivative of f in the u direction. We additionally denote the 96 

gradient as � g = [ f u f v f w 

] T , the normal as � n = 

�
 g 

‖ � g ‖ , a Hessian as H , 97 

and identity matrices as I . We denote both point locations and ma- 98 

trices using upper case, bold symbols. 99 

2.1. Curvature calculation 100 

As mentioned in the introduction, curvature in volumetric data 101 

can be computed mathematically as the first two eigenvalues of 102 

∇ 

�
 n . However, such a strategy is problematic in practice. First, even 103 

when f is known, this computation requires finding the partial 104 

derivatives of a normalized gradient, which can be a tedious pro- 105 

cess for humans and even impossible for mathematics software 106 

packages (e.g., [18] found that some expressions are beyond the 107 

capabilities of computer algebra systems, and estimated derivatives 108 

must be used instead). Second, with sampled data, where f is un- 109 

known, determining change in estimated, normalized values is re- 110 

quired, which hinders use of direct convolution-based derivative 111 

estimates [10] . As a result, multiple curvature formulations have 112 

been reported in the literature, with some for curvature determi- 113 

nation from a known f ( [19] ), where derivatives need not be es- 114 

timated but are computed directly from f , some focused on easing 115 

determination of complicated curvature-related functions that arise 116 

from a known f ( [18] ), and still others useful in determining cur- 117 

vature from an unknown f ( [7,10] ), where derivatives are first es- 118 

timated and curvatures are then determined from these estimated 119 

derivatives. The focus of our work here is determination of curva- 120 

ture from an unknown f . Consequently, many of the prior strategies 121 

for curvature determination, described next, involve both deriva- 122 

tive estimation schemes and their own formulation for curvature. 123 

2.2. Prior strategies 124 

Next, we describe prior methods for determining curvature in 125 

volume data. Many methods use a strategy of estimating deriva- 126 

tives (via convolution along each axis or fitting) and determining 127 

curvature using those estimated derivatives. A variant strategy is to 128 

avoid derivative estimation by exploiting various geometric proper- 129 

ties of curvature (e.g., the method of Hladøuvka et al. [9] avoids ex- 130 

plicitly estimating first derivatives and instead computes normals 131 

from tangents estimated by triplets of points). Some methods dis- 132 

cussed here require a choice of one or more parameters, and in 133 

general the best parameter choices vary depending on the type of 134 

data considered (e.g., noise-free, real, containing fine features, etc.). 135 

In our discussions of the methods here, we also note our chosen 136 

parameters used in our tests presented later. For methods where 137 

existing recommended parameter choices exist, our reports here 138 

are based on those (except where noted otherwise). For others, 139 

we have attempted to choose parameters that provide reasonable 140 

accuracy across a variety of types of data (based on testing each 141 

method with a variety of parameter values and data types). 142 

2.2.1. Taylor Expansion convolution (TE) 143 

The curvature determination method of Kindlmann et al. [10] is 144 

based on separable convolutions that estimate first and second 145 

partial derivatives from which curvatures are ultimately deter- 146 

mined. The convolutions use filters developed according to the 147 

framework of Möller et al. [20] , which allows for a given accuracy 148 

and continuity. 149 

The Kindlmann et al. method first applies these filters at ev- 150 

ery data point in the volume to estimate the derivatives. Then, the 151 

estimates of f ’s first and second derivatives are used to determine 152 

normals, gradients, and Hessians. From these, three quantities are 153 
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