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a b s t r a c t

Many cryptographic and error control coding algorithms rely on finite field arithmetic. Hardware
implementation of these algorithms requires an efficient realization of finite field GF(2m) arithmetic
operations. Finite field multiplication is complex among the basic arithmetic operations, and it is
employed in field exponentiation and inversion operations. Various algorithms and architectures are
proposed in the literature for hardware implementation of finite field multiplication to achieve a
reduction in area and delay. In this paper, a modified interleaved modular reduction multiplication
algorithm and its bit-serial sequential architecture are proposed. It is observed from the comparison of
analytical results that the proposed architecture achieves the reduction in area and area-delay product
compared to the existing multipliers. The proposed multiplier achieves an improvement of 39% in area
and 17% in area-delay product estimations for field order of 409 when compared with the best sequential
multiplier available in the literature. Application specific integrated circuit (ASIC) implementation of the
proposed multiplier together with the two most comparable multipliers confirms that the proposed
multiplier outperforms in terms of area and area-delay product. The proposed multiplier is suitable for
implementation of security in Internet of Things (IoT) gateways and edge-devices.

� 2019 Elsevier GmbH. All rights reserved.

1. Introduction

Internet of Things (IoT) is a recent communication technology
which can extend network services for constrained environments
also. The effective spreading of IoT into various heterogeneous
environments depends on the customised security and privacy fea-
tures employed in IoT devices [1]. Network security for IoT can be
achieved by using Cryptography. Elliptic curve cryptography is a
more suitable candidate for resource-constrained environments,
especially for IoT applications, as it provides more security with
shorter key sizes and involves less computational complexities
[2]. Furthermore, cryptosystems such as elliptic curve cryptosys-
tem and elgamal cryptosystem heavily depend on finite field arith-
metic [3].

In addition to cryptography, many other applications such as
error correcting codes (Reed-Solomon Coders) [4,5], computer
algebra, and digital signal processing (convolution) make use of
finite field arithmetic. A finite field GF(2m) is an algebraic set struc-
ture of 2m elements upon which various arithmetic operations such

as addition, subtraction, multiplication, and division can be per-
formed without leaving the set [6]. Finite field GF(2m) addition is
trivial, and it can be performed with bit-wise XORing two oper-
ands. Multiplication is a computationally complex operation, and
it is used in more complex operations such as exponentiation
and inversion. Various bases are proposed in the literature for GF
(2m) such as polynomial basis, normal basis, and redundant basis
[3]. The efficiency of finite field arithmetic depends on the choice
of basis. Normal basis multiplication is more complex and requires
more hardware than polynomial basis multiplication [7]. Redun-
dant basis eliminates the modulo reduction [8], however, it
involves embedding GF(2m) in a cyclotomic field of higher order
which requires more bits to represent field elements, resulting in
more hardware. Polynomial basis provides more simple and regu-
lar structures without any basis conversion requirements [7], and
is a better choice of basis. Every GF(2m) is characterized by its field
defining mth degree polynomial called irreducible polynomial. The
performance of a finite field multiplier also depends on the type of
selected field irreducible polynomial. Various classes of irreducible
polynomials such as generic, trinomials, pentanomials, equally
spaced polynomials (ESP), and all one polynomials (AOP) are pro-
posed in the literature [9]. It is observed that generic polynomials
require more power and more area compared to all other classes.
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However, generic polynomials are preferred as other specific
classes based implementations are not suitable for all applications.
Finite field multiplication implementations with generic polyno-
mials can be used for a wide range of applications especially for
ECC based cryptography [10].

Various GF(2m) multiplier design styles are proposed in the lit-
erature. Depending on the style of interfaces for applying the oper-
ands and taking the result, bit-serial [11,12], bit-parallel [13,14],
and digit-level [8] structures are developed. Several architectures
such as sequential, parallel, systolic, semi-systolic, and pipelined
are developed depending on the organization of computation.
However, bit-serial sequential multipliers are highly area-
efficient and suitable for constrained applications.

Several algorithms and architectures for polynomial basis mul-
tiplication have been proposed in the literature to achieve better
area and time complexities. Beth et al. [15] presented various
bit-level serial-in parallel-out architectures. In these architectures,
one input loaded in parallel and another one loaded serially one
bit per clock cycle requiring a total of m clock cycles. Song et al.
[16] presented a new polynomial basis bit-serial multiplier suit-
able for broadcast structures. A bit-serial systolic multiplier com-
bined with squarer was presented in [17]. In [18], a serial
multiplier was presented with an area-efficient FPGA implementa-
tion. In [19], a bit-level parallel-in serial-out polynomial basis
multiplier was presented where two inputs are preloaded and
output is generated one-bit per clock cycle. Deschamps et al. [9]
presented an implementation of bit-serial multipliers using
least-significant-bit first and most-significant-bit first algorithms.
Imaña [20] proposed a new low latency parallel-in/parallel-out
sequential polynomial basis multiplier over GF(2m). It is a partially
versatile multiplier and applicable to many irreducible polynomi-
als. In [21], a low-power and high-speed bit-serial versatile multi-
plier was proposed which is flexible with field size as well as
irreducible polynomial. Kim et al. [22] proposed a bit-serial
systolic multiplier using Montgomery multiplication. Ho H [23]
proposed a versatile sequential multiplier for a class of fields.
El-Razouk et al. [24] presented a new bit-level serial GF(2m) mul-
tiplier. It is a fully serial-in parallel-out multiplier which does not
require preloading of multiplicands. Mathe et al. [25] presented a
sequential polynomial basis multiplier for generic irreducible
polynomials with a latency of m clock cycles. This architecture is
designed to take one operand in parallel and another operand seri-
ally during computation. It is a versatile multiplier in the view that
it is applicable to any irreducible polynomial over GF(2m). In this
paper, we propose a modified algorithm employing interleaved
modular reduction multiplication approach [26] that is available
in the literature. The modification involves formulating the algo-
rithm employing more efficient logical relations and thereby
achieving hardware efficiency as well as improved regularity.
Derivation of these efficient logical relations is based on the fact
that NAND gate has lower area and time complexities when
compared to AND gate complexities, which can result in hardware
efficiency and lower critical path delay [27,28]. An area-efficient
sequential architecture is also developed for this proposed multi-
plication algorithm for GF(2m) for generic irreducible polynomials.
The performance comparisons based on area and area-delay
estimations of the proposed multiplier with previous works is pre-
sented. In addition, ASIC implementation results of the proposed
multiplier are presented.

The rest of the paper is organized as follows. A brief review of
polynomial basis multiplication is presented in Section 2. Mathe-
matical formulation of the proposed algorithm and the proposed
architecture are presented in Section 3. Architectural complexities
and comparisons of the proposed multiplier with existing multipli-
ers are presented in Section 4. ASIC implementation results of the

proposed multiplier are presented in Section 5. Finally, Section 6
presents the conclusions.

2. A brief review of Polynomial basis representation and
multiplication in GF(2m)

In this section, a brief review of polynomial basis representation
in GF(2m) and multiplication operation using the same basis are
presented. Every GF(2m) finite field contains 2m elements. Each ele-
ment of the field can be represented with a polynomial of degree
less than or equal to (m� 1) over GF(2). Polynomials over GF(2)
indicates that the coefficients of the polynomials come from the
ground field GF(2) whose elements are 0 and 1. Every finite field
contains at least one irreducible polynomial over GF(2) associated
with it. The root of this irreducible polynomial is a field element
whose individual powers ranging from 0 to (m� 1) form the poly-
nomial basis with m elements. Multiplication of GF(2m) elements
involves addition and multiplication of coefficient elements com-
ing from the base field GF(2). Multiplication in GF(2) is performed
by the logical AND operation, and addition is performed by the log-
ical XOR operation. For a given field order, m, the result of arith-
metic operations depends on the irreducible polynomial selected
for the field. The multiplication operation in GF(2m) involves the
usual multiplication of two polynomial elements followed by mod-
ular reduction using the selected irreducible polynomial. For a GF
(2m), the general form of the irreducible polynomial R xð Þ is given
by a monic polynomial of the form

R xð Þ ¼ xm þ
X1

j¼m�1

rjxj þ 1 ð1Þ

with at least one of rj’s to be non zero and all rj2 GF(2).
Let a 2 GF(2m) be a root of the field irreducible polynomial R xð Þ

over GF(2m). Then, the polynomial basis is constituted by the fol-
lowing set of m elements given by (1;a;a2;a3, . . .. . ., am�1), and it
follows R að Þ ¼ 0. Let A and B be two arbitrary elements of GF(2m)
represented in polynomial basis as

A að Þ ¼
Xm�1

j¼0

ajaj ¼ am�1am�1 þ am�2am�2 þ . . . . . .þ a1aþ a0 ð2Þ

B að Þ ¼
Xm�1

j¼0

bjaj ¼ bm�1am�1 þ bm�2am�2 þ . . . . . .þ b1aþ b0 ð3Þ

where all aj; bj 2 GF(2). Then the product polynomial P að Þ is given
by

P að Þ ¼ A að Þ � B að Þð Þmod R að Þ ð4Þ
Rewriting Eq. (4) by using Eq. (2) and Eq. (3) gives

P að Þ¼ am�1am�1þam�2am�2þ . . . . . .þa1aþa0
� ��

� bm�1am�1þbm�2am�2þ . . . . . .þb1aþb0ÞÞmod R að Þ ð5Þ�

Evaluation of Eq. (5) gives P að Þ to be a m� 1ð Þth degree polyno-
mial as

P að Þ ¼ pm�1am�1 þ pm�2am�2 þ . . . . . .þ p1aþ p0 ð6Þ
where all pj 2 GF(2).

Since GF(2m) can also be viewed as an m-dimensional vector
space over GF(2), the coordinate sets am�1; am�2; . . . ; a0ð Þ and
bm�1; bm�2; . . . ; b0ð Þ corresponds to GF(2m) elements A and B, respec-
tively and irreducible polynomial R xð Þ is denoted with the set
rm�1; rm�2; . . . ; r1;1ð Þ.
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