
The Journal of Systems and Software 160 (2020) 110458

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Feature dependencies in automotive software systems: Extent,

awareness, and refactoring

Andreas Vogelsang

Technische Universität Berlin, Germany

a r t i c l e i n f o

Article history:

Received 21 March 2019

Revised 4 September 2019

Accepted 1 November 2019

Available online 7 November 2019

Keywords:

Feature interaction

Automotive

Requirements engineering

Software architecture

Technical debt

Empirical study

a b s t r a c t

Many automotive companies consider their software development process to be feature-oriented. In the

past, features were regarded as isolated system parts developed and tested by developers from different

departments. However, in modern vehicles, features are more and more connected and their behavior

depends on each other in many situations. In this article, we describe how feature-oriented software de-

velopment is conducted in automotive companies and which challenges arise from that. We present an

empirical analysis of feature dependencies in three real-world automotive systems. The analysis shows

that features in modern vehicles are highly interdependent. Furthermore, the study reveals that develop-

ers are not aware of these dependencies in most cases. For the three examined cases, we show that less

than 12% of the components in the system architecture are responsible for more than 90% of the fea-

ture dependencies. Finally, we propose a refactoring approach for implicit communal components, which

makes them explicit by moving them to a dedicated platform component layer.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Software development in automotive companies is strongly in-

fluenced by existing legacy systems, organizational constraints, and

complex OEM/supplier relationships (Broy, 2006). Nevertheless, au-

tomotive companies are forced to quickly deliver increasingly com-

plex software to keep up with their competitors and other digital

products with shorter development life-cycles. In this context, like

in many others, short-term goals, such as the delivery of a feature,

frequently trump long-term objectives like maintainability or ex-

tensibility (Martini et al., 2014).

The development of the software system in an automobile

is characterized by a decomposition into vehicle domains such

as powertrain, body, chassis, driver assistance, and infotainment.

Within these vehicle domains, subsystems group and structure

several vehicle features that provide functionality to the driver or

other external systems (Broy et al., 2007). Examples for vehicle fea-

tures are airbag, cruise control , or start-stop system .

Automotive companies try to keep features as independent as

possible from each other because they usually structure their or-

ganization and resources based on features (e.g., airbag and cruise

control can be developed in completely different departments).

However, in the past years, the different f eatures of a vehicle

got more and more interconnected to provide innovative behav-

E-mail address: andreas.vogelsang@tu-berlin.de

ior (Broy, 2006). For example, the central locking system inte-

grates the pure functionality of locking and unlocking car doors

with comfort features (such as adjusting seats, mirrors, and radio

tuners according to the specific key used during unlocking), with

safety/security features (such as locking the car beyond a mini-

mum speed, arming a security device when the car is locked, and

unlocking the car in case of a crash), and with human-machine-

interface features, such as signaling the locking and unlocking us-

ing the car’s interior and exterior lighting system.

A feature is implemented through a network of communicating

components. Technically, a component is a piece of software de-

ployed to a hardware execution unit, which is connected to one

or more bus systems that provide signals from all kinds of other

components. The signals on a bus system are available to all com-

ponents connected to that bus. Therefore, it is a common practice

of developers to (re)use any signal that is available on the bus sys-

tem to implement or adapt a feature, regardless of the origin of

that signal. This practice leads to behavioral dependencies between

features, some of which are intended and some of which are unin-

tended.

Behavioral dependencies between features (a.k.a. feature in-

teractions (Zave, 1999)) have been observed and addressed first

in telecommunication systems (Calder et al., 2003) followed by

studies on Internet applications (Crespo et al., 2007), service sys-

tems (Weiss et al., 2005), automotive systems (Vogelsang and

Fuhrmann, 2013), software product lines (Jayaraman et al., 2007),

computational biology (Donaldson and Calder, 2012), and in many

https://doi.org/10.1016/j.jss.2019.110458

0164-1212/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2019.110458
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.110458&domain=pdf
mailto:andreas.vogelsang@tu-berlin.de
https://doi.org/10.1016/j.jss.2019.110458

2 A. Vogelsang / The Journal of Systems and Software 160 (2020) 110458

other fields outside of computer science. Several studies show that

feature dependencies have a negative impact on maintenance ef-

forts (Ribeiro et al., 2011; Cafeo et al., 2016), increase the likelihood

of integration failures (Cataldo and Herbsleb, 2011), and prevent

modular reasoning (Kästner et al., 2008).

Since the development of automotive systems is structured ac-

cording to features, our research goal is to analyze the extent and

awareness of feature dependencies in practice empirically. We are

interested in how many feature dependencies actually exist in real-

world automotive systems, whether the developers are aware of

these, and whether the dependencies play a role in the way the

systems are built.

To answer these questions, we had the chance to examine three

automotive software systems from practice. More specifically, each

system was characterized by a set of features that it provides, a

set of components with interface descriptions that implement the

features, and a feature-component mapping that indicates which

components contribute to the implementation of which features.

Since there was no notion of feature dependencies in the datasets

(nor in any other artifact of the company), we developed an algo-

rithm to extract feature dependencies from the component archi-

tecture.

With this algorithm, we found numerous feature dependencies

that crosscut the whole system. In a follow-up interview study, we

found that the respective developers were unaware of almost 50%

of the dependencies. Moreover, we were able to show that feature

dependencies are not considered systematically when it comes to

restructuring the system’s architecture although implicit feature

dependencies can be considered as technical debt (Vogelsang et al.,

2016). Therefore, we propose a dependency-based refactoring ap-

proach that suggests shifting components from features to a ded-

icated platform component layer if they are strongly affected by

feature dependencies.

In summary, we describe the following contributions in this pa-

per:

1. We propose an algorithmic approach for extracting feature de-

pendencies from component architectures.

2. By analyzing three automotive software systems from practice,

we show that feature dependencies are numerous and crosscut

the whole system.

3. By confronting developers with these dependencies and analyz-

ing so-called service features, we show that feature dependen-

cies are hardly known and considered in the development of

the system’s architecture.

4. We propose a dependency-based refactoring approach for sys-

tem components, which is able to reduce the number of feature

dependencies by 90% by refactoring less than 12% of the com-

ponents in the examined systems.

Structure of the paper: This paper is structured along the ques-

tions of extent, awareness, and refactoring of feature dependen-

cies. After providing some background information and introducing

the dependency extraction algorithm in Section 2 , we analyze the

study object systems with respect to extent of feature dependen-

cies (Section 3) and awareness of feature dependencies (Section 4).

In Section 5 , we introduce our refactoring approach and show its

application to the three systems. In Section 7 , we present alterna-

tive solutions to ours before concluding the paper with a discus-

sion and summary.

Relation to previous work: This article summarizes and extends

the work of previous publications (Vogelsang et al., 2016; 2012;

Vogelsang and Fuhrmann, 2013). We extend the previous work by

the following contributions:

• We extend the analysis of RQs 1–2 and 5–6, which have already

been addressed in previous work, by an additional dataset that

is larger than the existing two datasets. By this, we enhance the

external validity of our previous work. In addition, we provide

a more in-depth discussion of the results.
• We extend RQ2 with a new analysis that correlates the number

of feature dependencies associated with a component with the

position of a that component in a feature processing chain. This

analysis shows details about the role of dependencies in differ-

ent architectural stages of a feature (e.g., sensing, processing,

actuation).
• We address a new research question RQ4 in the context of the

new dataset. In this RQ, we examine the relation between fea-

ture dependencies and so-called service features that develop-

ers defined in the new dataset. The purpose of these service

features is that they provide platform functionality available

for use in other features of the vehicle. The explicit definition

of service features in the new dataset allowed us to examine

whether feature dependencies are more frequent in service fea-

tures compared with regular features. This analysis provides an

additional viewpoint to the question of how aware developers

are of feature dependencies.
• We explain the dependency extraction algorithm in more detail

and provide a characterization as pseudo code. In addition, we

publish the tool that we developed to perform the feature de-

pendency analysis. This increases the reproducibility and trans-

parency of our analysis and allows other researchers to reuse

the analysis.

2. Background

2.1. Features and feature dependencies

The term feature is associated with a great variety of mean-

ings and interpretations in research and industry. Additional terms

that are often mentioned in this context are the terms function or

service . Depending on the focus, the term feature may be used to

describe distinctive characteristics of a system (Kang et al., 1990;

Chen et al., 2005), elements of a functional specification (Shaker

et al., 2012; Schätz, 2008), or increments and configuration options

in a design or implementation (Liu et al., 2006; Apel et al., 2010).

In this article, we focus on features as elements of a functional

specification for a multifunctional system (cf. Broy, 2010; Batory

et al., 2004). This means features are used to structure the func-

tionality of a system with the goal to decompose the specification.

Decomposition into completely independent features is usually not

possible and also not desirable in many cases. The goal is to break

down the functionality into features with small and clear interfaces

to each other to allow for a modular and distributed development.

For our work, it is not important whether a feature also represents

a configuration option. Our analysis focuses on features and their

dependencies that are part of one specific product.

Based on the different notions of a feature, the notion of fea-

ture dependencies also differs. In the context of software prod-

uct lines, feature dependencies are understood as constraints over

the possible configuration space of the product line (Apel et al.,

2013a). The constraints may be specified by logic relations be-

tween features such as requires or excludes . We do not focus on

this interpretation of feature dependencies in this article. Several

researchers focus on code-level implementations of software prod-

uct lines and the challenges of feature dependencies for the de-

velopment process. Cafeo et al. define: “In the source code, a fea-

ture dependency occurs whenever one or more program elements

within the boundaries of a feature depend on elements external to

that feature, such as a method defined in one feature and called

by another feature” (Cafeo et al., 2016). The effects of such de-

pendencies have been extensively studied in preprocessor-based

implementations (Kästner et al., 2008). Ribeiro et al. (2011) and

Download English Version:

https://daneshyari.com/en/article/13432384

Download Persian Version:

https://daneshyari.com/article/13432384

Daneshyari.com

https://daneshyari.com/en/article/13432384
https://daneshyari.com/article/13432384
https://daneshyari.com

