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a b s t r a c t

To design microstructure and microhardness in the additive manufacturing (AM) of nickel (Ni)-based
superalloys, the present work develops a novel data-driven approach that combines physics-based mod-
els, experimental measurements, and a data-mining method. The simulation is based on a computational
thermal-fluid dynamics (CtFD) model, which can obtain thermal behavior, solidification parameters such
as cooling rate, and the dilution of solidified clad. Based on the computed thermal information, dendrite
arm spacing and microhardness are estimated using well-tested mechanistic models. Experimental
microstructure and microhardness are determined and compared with the simulated values for
validation. To visualize process–structure–properties (PSPs) linkages, the simulation and experimental
datasets are input to a data-mining model—a self-organizing map (SOM). The design windows of the
process parameters under multiple objectives can be obtained from the visualized maps. The proposed
approaches can be utilized in AM and other data-intensive processes. Data-driven linkages between
process, structure, and properties have the potential to benefit online process monitoring control in order
to derive an ideal microstructure and mechanical properties.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Accelerating the process and materials design in additive
manufacturing (AM) has been investigated in the current literature
(e.g., Refs. [1–3]). In this respect, multiscale and multiphysics
modeling and simulation are vital, because they have the potential
to significantly reduce the cost and time expended in experiments
[4,5]. Many efforts have been made to model and simulate AM
processes in order to predict process–structure–property (PSP)
relationships [6–9]. Meanwhile, it is critical for model validation
and verification to employ highly controlled experimental
measurements, which include online monitoring of the process,
microstructure characterization, and mechanical testing [10–12].

However, merely combining experiments with simulations
cannot achieve the desired acceleration in AM process and
materials design, because it is difficult to understand and utilize

the high-dimensional datasets produced by simulations and
experiments. There is an essential need for supportive data science
approaches that efficiently integrate the iterations between
experiments and multiscale simulation. Popova et al. [13] used
data science approaches to understand the process–structure
linkages in AM, and used a proposed data science workflow in an
attempt to understand the relationships between process
conditions and synthetic grain structure. An integration of
physics-based and data-mining approaches for temperature field
prediction in AM has been proposed [14,15]. A surrogate model
based on a functional Gaussian process was calibrated by means
of three-dimensional (3D) finite-element analysis (FEA) and
experimental thermal image data [14,15]. Salloum et al. [16]
undertook high-dimensional dataset compression by using
adaptive Alpert tree wavelets in the laser-engineered net shape
(LENS) process. The self-organizing map (SOM), which was
proposed by Kohonen [17,18], is an unsupervised machine learning
algorithm based on neural networks that is able to map high-
dimensional data to two-dimensional (2D) planes while preserving
topology [19,20]. Compared with an artificial neural network
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(ANN), which is commonly used for regression problems, the main
advantage of the SOM is that it can visualize high-dimensional data
in the form of a low-dimensional map, which helps researchers to
visually identify underlying relations between the features. As a
tool to visualize high-dimensional datasets, the SOM is beneficial
for the cluster analysis of real-life design problems as well [21].

In this study, an SOM is used to visualize high-dimensional data
in AM; these data are obtained from well-designed experimental
measurements and multiphysics models. The SOM is introduced
to find the relationships among laser power, mass flow rate, energy
density, dilution, cooling rate, dendrite arm spacing, and micro-
hardness in AM. In addition, the design windows of process param-
eters under multiple objectives can be obtained from the
visualized SOM. A schematic diagram of this work is shown in
Fig. 1 [22].

2. Experimental dataset

Single tracks of Inconel 718 powder were deposited on an AISI
1045 carbon steel disc using a 1020 nm high-powered continuous
wave laser. The beam diameter at its focus is 3 mm. The laser
power was set to be constant, while the mass flow rate was incre-
mented from 3.35 to 27.2 g�min�1 in 2.65 g�min�1 increments. At
each mass flow rate, the laser power was incremented from 1000
to 2000 W in 200 W increments, resulting in 60 single tracks. The
detailed process parameters and conditions can be found in our
previous paper [10]. Materials characterization in this case

included CR measurements, dilution measurements, dendrite arm
spacing measurements, and hardness testing. An infrared thermal
camera was used to determine the cooling rate from the solidus
to liquidus temperature of the steady-state melt pool, as detailed
in Ref. [10]. After etching the clad cross-section, dilution and den-
drite arm spacing can be identified and quantified. Vickers micro-
hardness measurements were taken to obtain the averaged
microhardness. A summary of the experimental efforts as well as
a chart detailing the dilution are provided in Fig. 2. Details of
experiments can be found in Ref. [22].

3. Physics-based simulation dataset

A computational thermal-fluid dynamics (CtFD) model was
developed to simulate the directed energy deposition (DED) pro-
cess [23]. The current paper does not describe the modeling equa-
tions, but rather provides a few features to offer an understanding
of the CtFD model and process–structure models. The non-
isothermal Navier–Stokes (N–S) equations, which include mass,
momentum, and energy equations, were solved to obtain the tem-
perature field and liquid metal flow in the melt pool [24,25]. A
physics-based arbitrary Lagrangian–Eulerian (ALE) method was
utilized to track the free surface of the melt pool [23]. The melt
pool dimensions, dilution, and cooling rate at the liquid–solid
interface can be computed based on the steady-state melt pool
temperature field. Dendrite arm spacing is evaluated by the Hurt
formula [26]. Vickers hardness (HV) can be determined by the

Fig. 1. A schematic description of the workflow typically employed in current computational efforts (top row) and of experimental efforts (bottom row), along with a
description of how this can be augmented with a data-mining approach to recover high-value PSP linkages of interest to material innovation efforts. CALC: calculated; EXP:
experiment.
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