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a b s t r a c t

This work addresses the multiscale optimization of the purification processes of antibody fragments.
Chromatography decisions in the manufacturing processes are optimized, including the number of chro-
matography columns and their sizes, the number of cycles per batch, and the operational flow velocities.
Data-driven models of chromatography throughput are developed considering loaded mass, flow veloc-
ity, and column bed height as the inputs, using manufacturing-scale simulated datasets based on micro-
scale experimental data. The piecewise linear regression modeling method is adapted due to its
simplicity and better prediction accuracy in comparison with other methods. Two alternative mixed-
integer nonlinear programming (MINLP) models are proposed to minimize the total cost of goods per
gram of the antibody purification process, incorporating the data-driven models. These MINLP models
are then reformulated as mixed-integer linear programming (MILP) models using linearization tech-
niques and multiparametric disaggregation. Two industrially relevant cases with different chromatogra-
phy column size alternatives are investigated to demonstrate the applicability of the proposed models.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The global industry has been experiencing accelerating changes
during the recent transformation of traditional manufacturing into
smart manufacturing [1,2]. During the conversion process, indus-
tries face a number of challenges posed by smart manufacturing,
which have attracted great attention in both academic and practi-
tioner communities [3], particularly in the process industry [4].
Some of the challenges to be covered in this work include:

� The use and analysis of data, with a particular focus on the
development of data-driven surrogate/metamodels to simplify
complex processes and to enable manufacturing intelligence;

� The implementation of multiscale modeling and optimization
to integrate strategic and planning decisions with operations in
order to support enterprise-wide coordination and optimization;

� The development of computationally efficient models, algo-
rithms, and tools in order to find global optimal solutions for smart
manufacturing decision-making and to enable large-scale
optimization.

In this work, we aim to develop optimization-based decision-
making models for optimal purification strategies in the manufac-
turing process of an antibody product based on simple data-driven
models, in an attempt to cope with the above challenges in the bio-
pharmaceutical industry. In order to achieve better control of the
processes and improve production efficiency, biopharmaceutical
manufacturing process optimization problems have been investi-
gated using different modeling and solution techniques, such as
metaheuristic [5], dynamic optimization [6], evolutionary algo-
rithm [7–9], Markov decision method [10], and mixed-integer pro-
gramming [11–22]. Data-driven models—also known as surrogate
models or metamodels—refer to models that are built on the basis
of data, but are not dependent on theoretical knowledge of the
concerned processes or systems. Data-driven models of complex
processes and systems provide model simplicity and computa-
tional efficiency [23], and their integration with optimization
requires less computational effort and has a broad application in
the engineering field [24,25]. In particular, such models have
demonstrated research benefits in the modeling and optimization
of chromatography purification operations [26–29]. However, only
a few attempts have been made to integrate data-driven models
into optimization models for biopharmaceutical purification pro-
cesses. Nagrath et al. [30] developed an artificial neural network
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Nomenclature

Indices
d Position in multiparametric disaggregation = p, . . .,maxp
i Column volume size
j Column number = 1, . . .,maxCYNs

k Cycle number = 1, . . .,maxCNs

m Diameter size
n Digit of the binary representation = 1, . . .,dlog2maxBNe
q Integer number in multiparametric disaggregation
r Interval in piecewise regression function
s Downstream step = ct1 (centrifugation 1), ho (homoge-

nization), ct2 (centrifugation 2), fi (filtration), af (affinity
chromatography), ce (cation-exchange chromatogra-
phy), uf1 (UF/DF 1), ce (anion-exchange chromatogra-
phy), uf2 (UF/DF 2), bf (bulk fill)

Sets
CS Set of chromatography steps ={af, ce, ae}

Parameters
a, b, c Utilities cost coefficients
aot Annual operating time, d
bcvs Buffer volume ratio at chromatography step s
bps;r Breakpoint of loaded mass between intervals r and r + 1

at chromatography step s, g
bpc Buffer price, GBP�L�1

brc Bioreactor cost, GBP
brn Number of bioreactors
brt Bioreaction time, d
brv Bioreactor volume, L
bvrs Buffer volume ratio at centrifugation step s
ccs;i Column cost of size i at chromatography step s, GBP
cc
�

s;m Column cost of diameter size m at chromatography step
s, GBP

cvs;i Volume of column size i at chromatography step s, L
dbcs Dynamic binding capacity at chromatography step s,

g�L�1

dms;i Diameter of column size i at chromatography step s, cmgdmm Diameter of size m at chromatography step s, cm
don Number of operators for downstream processing
dvr Diafiltration volume ratio at the second UF/DF step
ecvs Elute volume ratio at chromatography step s
el Equipment lifetime, year
fconc Final concentration of product, g�L�1

fvr Flush volume ratio of the first UF/DF step
gef General equipment factor
gu General utility unit cost, GBP�L�1

hs;i Bed height of column size i at chromatography step s, cm
ir Interest rate
ik Ratio of insurance cost to fixed capital investment
ls Lifetime of resin at chromatography step s, cycle
lang Lang factor
maxBBV Maximum buffer volume per batch, L
maxBN Maximum number of batches
maxCNs Maximum number of columns at chromatography step s
maxCOG Maximum COG per gram, GBP�L�1

maxCYNs Maximum number of cycles at chromatography step s
maxHs Maximum column bed height size at chromatography

step s, cm
maxLMs Maximum product mass loaded at chromatography step

s, g
maxp Maximum position in multiparametric disaggregation
maxTs Maximum processing time per batch at chromatogra-

phy step s, h
maxTCVs Maximum total column volume at chromatography step

s, L

maxTPs Maximum throughput at chromatography step s, g�L�1

mak Maintenance cost ratio to the fixed capital investment

mepc Media price, GBP�L�1

mik Miscellaneous material cost ratio to chemical reagent
and consumable costs

mk Management cost ratio to direct labor cost
oek Other equipment cost ratio to the bioreactor cost
of Resin overpacking factor
prs Processing rate of step s, L�h�1

qk Ratio of QCQA cost to direct labor cost
rpcs Resin price at chromatography step s, GBP�L�1

refCC Reference cost of a chromatography column, GBP
refDM Reference diameter of a chromatography column, cm
sfd Duration per shift, h
sfn Number of shifts per day, d�1

st Seed train bioreaction time, d
sk Supervisors cost ratio to direct labor cost
titer Upstream product titer, g�L�1

tk Tax cost ratio to the fixed capital investment
uon Number of operators per bioreactor in USP
uot USP operating time per day, h�d�1

vel Linear velocity of flow at the anion-exchange chro-
matography step, cm�h�1

w Wage of an operator, GBP�L�1

yds Product yield at step s
a Bioreactor working volume ratio
b0s;r Constant coefficient in interval r at chromatography

step s
bHs;r Coefficient for bed height in interval r at chromatogra-

phy step s
bLMs;r Coefficient for loaded mass in interval r at chromatogra-

phy step s
bVs;r Coefficient for velocity in interval r at chromatography

step s
e A small number
h Media overfill allowance
l Chromatography resin utilization factor
r Batch success rate

Continuous variables
ABV Annual buffer volume, L
AC Annual total cost, GBP
AP Annual product output, g
AT Annual downstream operating time, d
BAT Time for adding buffer per batch at the anion-exchange

chromatography step, h
BBV Buffer volume added per batch, L
BC Buffer cost, GBP
BT Downstream processing time per batch, d
BVs Buffer volume per batch in step s, L
CAC Capital cost, GBP
CC Consumables cost, GBP
COG Cost of goods per gram, GBP�g�1

CRC Chemical reagents cost, GBP
CAPq Continuous variable for annual production in multiple

disaggregation at digit q
CTPs;q Continuous variable for throughput in multiple disag-

gregation at digit q, step s
DLC Direct labor cost, GBP
FCI Fixed capital investment, GBP
GUC General utility cost, GBP
IC Insurance cost, GBP
LC Labor cost, GBP
LMs Mass loaded to single column at chromatography

step s, g
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