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a b s t r a c t 

This work is devoted to numerical analysis for two-dimensional thermoelasticity problems with temperature 

change by using the isogeometric boundary element method (IGABEM). The present IGABEM, which is highly 

attractive, possesses advantages of the isogeometric analysis with NURBS and boundary element method. We 

derive the theoretical formulations in terms of the IGABEM and apply it to thermal stress analysis. We examine 

the performance and accuracy of the proposed approach through numerical test cases which include steady-state 

uniform and non-uniform temperature change. The computed results are compared with the reference solutions 

which were derived from analytical or finite element methods. We also investigate the convergence of the present 

approach in modeling thermal stress problem. 

1. Introduction 

Many engineering structures operate under high temperature con- 
ditions such as gas turbines, diesel engines, and nuclear power plants. 
The existence of temperature field could significantly alter material 
properties of the structures or components and generate thermal stress 
as the temperature changes. The thermal stress plays a critical role 
that could lead to the damage of such structures. Investigation of the 
temperature field and thermal stress affecting the structures under 
heating has become an important topic in structural analysis. 

The theory of thermal stress has been well developed in the liter- 
ature. Although some closed–form analytical solutions are available, 
advanced numerical methodologies are more effective in solving engi- 
neering problems with general geometries and/or boundary conditions. 
In the past several decades, many numerical methods have been 
introduced to deal with thermal stress problems, such as finite element 
method (FEM) [1,2] , boundary element method (BEM) [3–5] , radial 
integration method (RIM) [6] , singular boundary method (SBM) [7] , 
generalized finite difference method (GFDM) [8] , and extended finite 
element method (XFEM) [9] . 

The FEM has been widely used in various scientific and industrial 
communities. However, the existing gap between computer–aided 
design (CAD) and finite element analysis (FEA) is well-known as 
a critical issue, and generating computational model in general is 
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time-consuming. In addition, element-based polynomial approximation 
used in the FEA induces the discretization errors, especially for complex 
structure. The recently developed isogeometric analysis (IGA) has be- 
come a powerful numerical approach, see e.g., [10,11] and references 
therein, which can eliminate such drawback. One of the underlying 
characteristics of the IGA lies in the use of the CAD basis functions as 
shape functions, and the CAD control points as the mesh nodes in FEA, 
thus the IGA unifies the fields of the CAD and FEA. Besides the advan- 
tages of the traditional FEM, the merits of the IGA lie in the fact that the 
IGA owns several desirable features, for instance, exact geometry, high 
accuracy of the solutions, high order continuity, and without traditional 
meshing procedure, see [10,11] . The IGA has been successfully imple- 
mented in many areas of engineering and science, see e.g., [12–21] . 

In CAD, non-uniform rational B–splines (NURBS) describe the 
boundaries of structure only, so one of the crucial steps in the IGA is 
to generate solid analysis models based on boundaries, and at present 
it is still a difficult task in generating such solid analysis models, 
especially for complex structures. In contrast, only the boundaries of 
the domain are meshed in the BEM, it has resulted in a new combined 
approach between the IGA and BEM (called as IGABEM), and the key 
issue of creating solid analysis models required in the IGA is no-longer 
required. Simpson et al. [22] first introduced the IGABEM to solve the 
two-dimensional (2D) elasticity, and proposed the method for dealing 
with singular integrals. Later, Simpson et al. [23] further explained the 
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Fig. 1. Schematic of stress components at boundary 

points. 

Fig. 2. Geometry and boundary conditions of a square plate. 

operation of the program, and presented the open source MATLAB pro- 
gram code. Gu et al. [24] developed local bivariate B-spline functions 
and successfully applied them to the IGABEM for three-dimensional 
(3D) potential problem, avoiding the calculation of a large number of 
singular integrals and near singular integrals. Gong et al. [25,26] used 
power series expansion method to improve the accuracy of singular in- 
tegrals, while near singularities in 2D and 3D potential problems can be 
removed or weaken with the aid of exponential transformation method. 
Han et al. [27] approximated the singular integral terms by using Taylor 
series polynomials expressions, and derived the semi-analytical expres- 
sions through a serious of integration by parts. Beer et al. [28] proposed 
a new IGABEM method using trimmed NURBS, which is simple and 
effective. Wang et al. [29] presented multi-patch nonsingular IGABEM 

with trimmed elements. Because the coefficient matrix of the IGABEM is 
full as that in BEM, it occupies a large amount of memory in computer, 
and the computational efficiency is low, and fast algorithm for the IGA- 
BEM emerges a key research issue. Takahashi and Masumoto [30] used 
fast multipole algorithm to solve 2D Laplace problem. Simpson and Liu 
[31] proposed a black-box fast multipole method based on T-spline. 

The NURBS control points have been used as design variables for 
structural shape optimization problems. Therefore, the design model, 
optimization model, and analysis model can be uniformly described 
with the NURBS. In that sense, the optimized boundary in general 
is smooth. Hence, the IGABEM is highly suitable for structure shape 
optimization. Li and Qian [32] adopted the IGABEM to optimize the 

shape of 2D and 3D elasticity problems. Lian et al. [33] used regularized 
IGABEM to optimize the shape of two-dimensional elasticity problems, 
avoiding the calculation of strong singular integrals, jump terms and 
shape derivatives. Sun et al. [34] used particle swarm optimization 
combined with the IGABEM to optimize the structure shape, eliminating 
the complicated sensitivity analysis process. 

Beer et al. [35,36] studied 2D and 3D elastic-plastic inclusions 
using the IGABEM. Peng et al. [37] simulated crack growth with 
NURBS-based IGABEM. Sun et al. [38] modeled crack propagation by 
using IGABEM based on Bézier extraction. Peake et al. [39] solved 
the 2D Helmholtz problem using the extended IGABEM. Coox et al. 
[40] solved Helmholtz problem with isogeometric indirect BEM. May 
et al. [41] solved 2D stationary magnetic and magneto-mechanical field 
problems using a hybrid method of IGA finite element and IGABEM. In 
our previous work, we used the IGABEM to investigate 2D steady heat 
transfer problems [42] . The numerical results show the advantages of 
the present IGABEM as it offers acceptable solutions and owns several 
desirable features of a powerful and efficient numerical method. 

Some major desirable features of the IGABEM can be summarized 
as follows: (a) it has the exact representation of geometries; (b) a 
traditional meshing process is avoided; (c) the high accuracy can be 
obtained because of the use of the NURBS basis; (d) the advantages 
of the IGA and BEM are possessed simultaneously; and (e) the volume 
parameterization is not required, which is one of the key issues in the 
isogeometric finite element method. In this paper, we further extend the 
IGABEM to solve thermal stress problems with varying temperature. We 
derive the formulations of IGABEM for thermoelasticity analysis with 
variable temperature, and present the main numerical implementation. 
Numerical results confirm high accuracy of the developed IGABEM for 
thermoelasticity. In addition, the computer codes are provided and that 
should be helpful for other researchers 

The rest of the manuscript is structured as follows. Section 2 briefly 
introduces the thermal stress problem. The formulation of IGABEM 

for thermal stress analysis is described in Section 3 . Section 4 presents 
the main numerical implementation. In Section 5 , several numerical 
examples are considered and the computed results are compared with 
the analytical solution or FEM solution. In Section 6 , we discuss several 
major conclusions observed from the analysis. 

2. Problem statement 

In absence of body forces, the equilibrium differential equation in 
elasticity can be written as 

𝜎𝑖𝑗,𝑗 = 0 (1) 

where 𝜎ij is the stress tensor. 
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