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Multiscale modeling is a systematic approach to describe the behavior of complex systems 
by coupling models from different scales. The approach has been demonstrated to be 
very effective in areas of science as diverse as materials science, climate modeling 
and chemistry. However, routine use of multiscale simulations is often hindered by the 
very high cost of individual at-scale models. Approaches aiming to alleviate that cost 
by means of Gaussian process regression based surrogate models have been proposed. 
Yet, many of these surrogate models are expensive to construct, especially when the 
number of data needed is large. In this article, we employ a hierarchical sparse Cholesky 
decomposition to develop a sparse Gaussian process regression method and apply the 
method to approximate the equation of state of a material in a multiscale model of 
dynamic deformation. We demonstrate that the method provides a substantial reduction 
both in computational cost and solution error as compared with previous methods.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Multiscale modeling has now become a de facto standard approach for the construction of high-fidelity models of complex 
phenomena and systems encountered in many areas of science and engineering [1–6]. The process of building a multiscale 
model starts with identification of relevant phenomena occurring at individual scales, both spatial and temporal. Thereafter, 
appropriate at-scale models characterizing these phenomena are selected and combined together into a single multiscale 
model. Computation is fundamental to multiscale modeling as at-scale models are usually cast in the form of computer 
models. In recent years, computational aspects of multiscale modeling have become the focal point of numerous research 
efforts (cf. [7] for an in-depth review of recent developments). These efforts have led to a conclusion that practicality 
of multiscale modeling hinges on the ability to significantly reduce the often staggering computational cost of at-scale 
models. Many different approaches have been proposed in order to reduce this cost, with the vast majority falling under the 
name of surrogate models. A surrogate model is a cheaper-to-evaluate approximation of a model, constructed from direct 
observations of the model. Surrogate models have been employed with great success in design optimization [8,9], where a 
model is repeatedly evaluated in the search for an optimal design. In physical sciences, the use of surrogate models can be 
traced back to the pioneering work of Pope [10], who employed surrogate modeling to enable simulations of combustion 
chemistry. Other examples of the applications of surrogate models in physical sciences include crystal plasticity [11,12], 
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Fig. 1. A two-scale model consisting of macroscale model F and microscale model f . Two mappings transform data between scales: the input filter G
which transforms data into an appropriate form for the microscale model and the output filter g which extracts relevant data from the microscale model 
to inform the macroscale model.

elastodynamics [13,14], atomistic modeling [15,16], quantum chemistry [17,18], and fluid dynamics [19]. A comprehensive 
survey of surrogate modeling techniques, including polynomial regression, kriging, multivariate adaptive regression splines, 
polynomial stochastic collocation, adaptive stochastic collocation, and radial basis functions can be found in [20,21].

Gaussian process regression has been advocated as a particularly flexible technique for surrogate model development [22,
23,16]. However, due to a significant cost of construction, Gaussian process regression is rarely employed to build a single 
surrogate model. Instead, the domain is often partitioned into a set of subdomains and separate surrogate models are built 
over each of the subdomains. While such an approach inevitably reduces the overall cost of constructing a surrogate model, 
this reduction in cost may be accompanied by considerable disadvantages, such as, for example, the loss of smoothness of 
the surrogate model. In this article, we introduce a methodology to reduce the cost of constructing surrogate models based 
on Gaussian process regression and apply it in the context of multiscale modeling. The methodology relies on the recently 
developed hierarchical Cholesky decomposition in order to reduce the computational cost for inverting the dense covariance 
matrix [25]. The computational complexity can be shown to be near-linear with respect to the size of the data set, which 
is a significant savings compared to the original cubic cost. However, it should be pointed out that the method does not 
completely resolve the curse of dimensionality issue of Gaussian process regression. Since it requires the construction of a 
data set over the uniform grid, the number of data points needed grows exponentially with respect to the dimension of the 
problem. Therefore, the method is particularly suited to low dimensional Gaussian process regression with a large number 
of data.

The manuscript is organized as follows. We describe the multiscale modeling context of our work in Section 2. The 
details of our approach are provided in Section 3, along with an application of the technique to constructing a surrogate 
model of an energetic material in Section 4.

2. A computational framework for scale-bridging in multi-scale simulations

The overarching context of the developments presented in this article is the scale-bridging framework for multiscale 
modeling of Leiter et al. [16]. Here, we only give a brief description of the framework, the reader is referred to [16] for 
a full exposition. The most elemental multiscale model consists of two at-scale models, the macroscale model F and the 
microscale model f (cf. Fig. 1). The macroscale model is a mapping F : I × D �→ R , where I is a collection of microscale 
models, domain D ⊂ RH , and range R ⊂ R� . Similarly, the microscale model is a mapping f : D̂ �→ R̂ where D̂ ⊂ Rη and 
R̂ ⊂ Rξ denote the domain and range of f , respectively. In addition, the framework includes two mappings to transform 
data between at-scale models. The mapping G : D̃ �→ D̂ , where D̃ ⊂ Rη̃ is the set of intermediate values derived from 
values in D by F . Henceforth, we refer to G as the “input filter” since it generates the input to f in the set D̂ . Likewise, 
the mapping g : R̂ �→ R̃ , where R̃ ⊂Rξ̃ , is referred to as the “output filter” as it extracts relevant data from the microscale 
model output to be passed to the macroscale model. More complex multiscale models can, of course, be formed through 
assemblies of multiple two-scale model building blocks.

The centerpiece of the scale-bridging framework is a module coordinating data exchanges between at-scale models, 
the Evaluation Module (cf. Fig. 2 (a)). The act of sending of ũ ∈ D̃ from F to the Evaluation Module is denoted as an 
evaluation request. The Evaluation Module carries out five distinct tasks: 1) it collects requests for evaluation of f from 
F ; 2) it applies the input filter to the evaluation requests to prepare input data for microscale models; 3) it schedules 
evaluation requests on available resources; 4) it monitors progress of evaluations to detect completion and handle failures; 
and 5) it applies the output filter to extract relevant data from completed f evaluations to return to F . However, in many 
practical applications, microscale models may be extremely costly to evaluate and methods to lower the evaluation cost are 
necessary in order to render the approach feasible. A popular approach, pioneered by Pope [10] in combustion modeling, 
relies on adaptive surrogate modeling, where evaluation requests are utilized to on-the-fly build an approximation to the 
microscale model. Such an approach is particularly advantageous as the modular structure of the scale-bridging framework 
allows to incorporate surrogate models with ease. Therefore, the framework can be simply augmented by the Surrogate 
Module operating along side of the macroscale model and the Evaluation Module (cf. Fig. 2 (b)). The role of the Surrogate 
Module is to automatically construct a surrogate model from completed microscale model evaluation data and subsequently 
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