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For a nested L-shaped array (N-LsA) composed of two orthogonal nested subarrays, the self-difference 
co-array of each nested subarray is hole-free, whereas cross-difference co-arrays between subarrays have 
holes. Due to the existence of holes, virtual cross-correlation matrices with increased degree of freedoms 
(DOFs) can not be constructed from cross-difference co-arrays, which will degrade the performance of 
direction of arrival (DOA) estimation. To overcome this problem, a high resolution two-dimensional 
(2-D) DOA estimation algorithm is exploited for N-LsA in this paper. Specifically, by using oblique 
projection operators, filled cross-difference co-arrays can be achieved by filling the holes, and virtual 
cross-correlation matrix will be obtained. Then the virtual correlation matrix of the N-LsA, which consists 
of virtual cross-correlation matrices and virtual autocorrelation matrices given by filled self-difference 
co-arrays, is reconstructed for 2-D DOA estimation. Additionally, the proposed algorithm contains an 
automatic angle-pairing procedure and can handle underdetermined DOA estimation. The estimation 
error, Cramér-Rao bound and computational complexity are derived. Simulation results show that the 
proposed algorithm offers substantial performance improvement over the existing algorithms.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Direction of arrival (DOA) estimation is an important applica-
tion of antenna arrays in radar, communication, sonar and many 
other fields [1–4]. It is well known that an uniform linear ar-
ray (ULA) with N antennas can detect at most N − 1 received 
signals by using subspace-based methods, e.g., MUSIC algorithm 
[5]. However, by exploiting the difference co-array provided from 
the original array, the number of signals which can be resolved 
will be increased dramatically and the estimation performance 
of algorithms will be improved significantly. To this end, nested 
arrays and coprime arrays with only N antennas have been in-
vestigated to provide self-difference co-array with O (N2) degree 
of freedoms (DOFs) for one-dimensional (1-D) DOA estimation [6,
7]. Particularly, for a two-level nested array with N antennas, its 
self-difference co-array is filled (i.e., no holes), and can provide 
(N2 − 2)/2 + N DOFs for 1-D DOA estimation by using MUSIC al-
gorithm [6].

* Corresponding author at: School of Electronics and Information Engineering, 
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In practical applications, many geometrical configurations have 
been exploited for 2-D DOA (i.e., elevation and azimuth angles) 
estimation, such as L-shaped array (LsA) [8], parallel linear array 
[9], circular arrays [3], rectangular arrays [10] and etc. Particularly, 
as the LsA composed of two orthogonal linear subarrays has good 
DOA estimation performance and is easy to implement, a num-
ber of approaches for 2-D DOA estimation have been investigated 
based on it, e.g., [8,11–13] and references therein. In [11], an ap-
proximate maximum likelihood method for 2-D DOA estimation is 
proposed with arbitrarily distributed arrays (including LsA). It can 
obtain a good performance within a few iterations when the initial 
2-D DOA are proper. To reduce the computational burden, some 
methods perform 2-D DOA estimation via two independent 1-D 
DOA estimations [8,12]. Particularly, the LsA in [8] consists of one 
ULA and one sparse linear array, which can provide larger aper-
ture compared with the LsA composed of two ULAs. Nevertheless, 
both the 2-D DOA estimation algorithm in [8,12] can only esti-
mate (N − 1) sources with N physical antennas in each axis. A 
combined real-valued subspace based method for 2-D DOA esti-
mation has been explored with an improved LsA [13], where the 
numbers of antennas of two ULAs respectively are N and M . The 
maximum resolvable source number of the proposed method in 
[13] is min(M − 1, 2N − 1) with M > N , which can increase resolv-
able source number compared with previous work [8,11,12].
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In order to inherit the advantages of the nested array (or co-
prime array) and LsA, the nested LsAs (N-LsAs) (or coprime LsAs) 
composed of two two-level nested arrays (or coprime arrays) have 
been exploited [14–16]. It should be noted that for a LsA, the 
angle α between an incident signal and one linear subarray is 
usually different from the angle β between the incident signal 
and the other one. Thus the cross-difference co-array with (α, β), 
which is from cross-correlation matrix between these two subar-
rays, has holes. Hence the virtual cross-correlation matrix can not 
be constructed for DOA estimation. Therefore, the existing estima-
tion algorithms, which only operate filled self-difference co-arrays 
of two nested (or coprime) subarrays separately [14,15], degrade 
their performances. Also, estimation performance of existing algo-
rithm [16], which combines hole-free self-difference co-arrays and 
cross-difference co-arrays with holes, may be degraded. Besides, 
the effect of noise is not considered in the aforementioned algo-
rithm [16].

It is noted that the holes in the self-difference co-arrays of 
coprime arrays can be filled by the techniques such as nuclear 
norm minimization [17–19] and positive definite Toeplitz com-
pletion [19–21] recently. The requirement of those techniques is 
that the resulting virtual correlation matrix has an Hermitian 
Toeplitz structure. However, due to α �= β , the above virtual cross-
correlation matrix is not a Hermitian Toeplitz matrix. Thus such 
techniques will not be used for filling holes in the cross-difference 
co-array mentioned above.

In this paper, to overcome this problem based on N-LsA, we 
propose a 2-D DOA estimation algorithm for high resolution, which 
uses both filled self- and cross-difference co-arrays by filling the 
holes. Specifically, the virtual autocorrelation matrices, which are 
from the filled difference co-arrays of the two-level nested sub-
arrays in the N-LsA, are used to perform 1-D DOA estimation 
separately. By using cross-correlation matrix, an automatic angle 
pairing is given to pair estimated angles. Then oblique projec-
tion (OP) operators are built with these paired angles to produce 
the component of each signal in the holes. Hence the holes will 
be filled and therefore the filled cross-difference co-array can be 
achieved. As a result, the virtual cross-correlation matrix can be 
reconstructed, which has the same dimension of the virtual auto-
correlation matrix. The virtual correlation matrix of N-LsA, which 
combines virtual cross-correlation matrices and virtual autocorre-
lation matrices, will be reconstructed for 2-D DOA estimation.

The rest of this paper is organized as follows. Section 2 reviews 
the signal model, difference co-array and two-level nested array. In 
section 3, the proposed algorithm is provided for N-LsA. Section 4
provides the performance analysis of the proposed algorithm. In 
section 5, numerical examples are given to show the effectiveness 
of our proposed algorithm. Finally, Section 6 contains conclusions.

In this paper, scalars are denoted by lowercase italic letters, 
e.g., a. Vectors are denoted by italic boldface lowercase letters, 
e.g., a. Matrices are denoted by italic boldface capital letters, 
e.g., A. We list some notational conventions which will be used 
in the paper.

• �a�: a number rounded to the nearest integer a and �a� ≤ a
• |a|: absolute value of a
• 〈a〉i : the item of a vector a corresponding to the signals at the 

ith location of an array
• diag(a): a diagonal matrix whose diagonal elements are given 

by a
• A∗: complex conjugate of A
• AT: transpose of A
• AH: conjugate transpose of A
• E {A}: mathematical expectation of A
• vec(A): vectorizing matrix A
• ||A||: the Euclidean norm of A

• A 	 B: Khatri-Rao product of A and B
• A ⊗ B: Kronecker product of A and B
• I N : an N × N identity matrix
• O N×M : an N × M zero matrix

2. Preliminaries

In this section, we will give a signal model, introduce the con-
cept of difference co-array, review two-level nested array and N-
LsA, and briefly introduce the oblique projection operator.

2.1. Signal model

We consider that K far-field narrowband signals from 1-D di-
rections {ϕk,k = 1,2, . . . , K } impinge on a linear array. The min-
imum distance between antennas is half-wavelength, i.e., λ/2. So 
the signal model x of a linear array at time t is given as

x(t) = As(t) + n(t), (1)

where s(t) = [s1(t) s2(t) . . . sK (t)]T is the signal vector, and A =
[a(ϕ1) a(ϕ2) . . . a(ϕK )] is the array manifold matrix with a(ϕi)

denoting the spatial steering vector of the ith signal. Furthermore, 
the white Gaussian noise n(t) is assumed to be uncorrelated with 
the signals. Also, the signals are assumed to be temporally white 
and uncorrelated with each other.

Then, the autocorrelation matrix of x(t) is written as

Rx = E
{

x(t)xH(t)
} = A Rs AH + σ 2

n I N , (2)

where signal autocorrelation matrix Rs = diag
(
σ 2

1 σ 2
2 . . . σ 2

K

)
is a 

diagonal matrix with σ 2
i being the ith signal’s power, and σ 2

n is 
the noise power.

2.2. Difference co-array

For a given array with N antennas, let �S i denote the position 
vector of the ith antenna. We have [6]

D = ±{�S i − �S j}, ∀i, j = 1,2, · · · , N. (3)

It is shown that set D contains some duplicate items. Removing 
repeated items (after their first occurrence), let Du contain the dis-
tinct elements of the set D .

Subsequently, the self-difference co-array of a linear array is de-
fined as the array whose antenna positions are given by the set Du
from (3). The linear array configuration indicates that �S i degener-
ates to a scalar quantity.

When �S i belongs to one linear array X with N antennas and 
�S j belongs to the other linear array Y with M antennas, (3) can 
be rewritten as [22]

D = ±{�S X,i − �S Y , j}, 1 ≤ i ≤ N,1 ≤ j ≤ M. (4)

The cross-difference co-array related to these two linear arrays is 
defined as the array whose antenna positions are given by the set 
Du from (4).

2.3. Two-level nested array and N-LsA

For a two-level nested array with N = N1 + N2 antennas [6], the 
dense sub-ULA has N1 antennas with antenna distance d1 = λ/2, 
and the sparse sub-ULA has N2 antennas with antenna distance 
d2 = (N1 + 1)d1, as shown in Fig. 1. If N is odd, N1 = (N − 1)/2
and N2 = (N + 1)/2. And if N is even, N1 = N2 = N/2. Hence, the 
antenna positions are at [6]

S T = {0, · · · , N1 − 1, N1, · · · , [N2 (N1 + 1)] − 1}d1. (5)
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