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a b s t r a c t

Sliding-mode-based differentiation of the input f (t) yields exact estimations of the derivatives
ḟ , . . . , f (n), provided an upper bound L(t) of |f (n+1)(t)| is available in real-time. In practice it involves
discrete sampling and numerical integration of the internal variables between the measurements.
Accuracy asymptotics of different discretization schemes are calculated for discrete noisy sam-
pling, whereas sampling and integration steps are independently variable or constant. Proposed
discrete differentiators restore the optimal accuracy asymptotics of their continuous-time counterparts.
Event-triggered sampling is considered. Extensive numeric experiments are presented and analyzed.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Differentiation of noisy signals is usually performed by the
algebraic, functional-analysis (Mboup, Join, & Fliess, 2009) and
control/observation methods. The observation-approach is to ap-
proximate the input by a signal with known derivatives to be
considered as derivatives’ estimations. Such tracking is often
based on high-gain (Atassi & Khalil, 2000), homogeneous (Per-
ruquetti, Floquet, & Moulay, 2008) and sliding-mode (SM) con-
trol (Edwards, Spurgeon, & Patton, 2000; Spurgeon, 2008; Utkin,
1992; Yu & Xu, 1996). High-order sliding modes (HOSMs) (Bar-
bot, Boutat, & Floquet, 2009; Bartolini, Pisano, Punta, & Usai,
2003; Dinuzzo & Ferrara, 2009; Feng, Yu, & Man, 2002; Fridman,
Shtessel, Edwards, & Yan, 2008; Levant, 2003; Li, Du, & Yu,
2014; Moreno & Osorio, 2012; Pisano & Usai, 2011; Plestan,
Glumineau, & Laghrouche, 2008; Shtessel, Taleb, & Plestan, 2012;
Torres-González, Sanchez, Fridman, & Moreno, 2017) require
finite-time (FT) exact robust differentiators and use homogeneity
theory for their development (Angulo, Moreno, & Fridman, 2013;
Bernuau, Efimov, Perruquetti, & Polyakov, 2014; Levant, 2003,
2005; Moreno, 2014; Polyakov, Efimov, & Perruquetti, 2015;
Shtessel & Shkolnikov, 2003).

✩ The material in this paper was partially presented at the 14th IEEE
International Workshop on Variable Structure Systems (VSS), June 1–4, 2016.
This paper was recommended for publication in revised form by Associate Editor
Zhihua Qu under the direction of Editor Daniel Liberzon.
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Homogeneous SM-based differentiators (Levant, 2003; Levant
& Livne, 2012) provide for the FT exact estimation of the deriva-
tives f (i), i ≤ n, of the input f (t), provided an upper bound L,
|f (n+1)

| ≤ L, is available. They also provide for the optimal error
asymptotics with respect to the noise magnitude (Levant, Livne, &
Yu, 2017) (see Section 3.1). Differentiators (Levant & Livne, 2019;
Levant & Yu, 2018) also reject unbounded noises of small average
value. Variable L(t) is considered in Castillo, Fridman, and Moreno
(2018) and Levant and Livne (2012, 2018).

A practical SM-based differentiator is a computer-based sys-
tem with a noisy discretely-sampled continuous-time input, and
numerical integration of the discontinuous dynamics over each
sampling interval (Livne & Levant, 2014; Reichhartinger, Spur-
geon, Forstinger, & Wipfler, 2017). Its error dynamics are in fact
hybrid (Livne & Levant, 2014; Tuna & Teel, 2006).

The widely used Matlab solvers are based on the Runge–
Kutta methods and are not applicable to SM-based dynamics due
to accuracy deterioration and slow calculation. Thus the Euler
method becomes the main integration method in application and
simulation of such systems.

One naturally expects the vanishing Euler integration step
to restore the optimal error asymptotics (Levant, 2003, 2005)
obtained in the continuous-time case. That expectation is math-
ematically true, but we prove here that it is practically impossible
to choose a sufficiently small integration step if the differentiation
order n exceeds 1.
Novelty. This paper is the first regular publication analyzing
the influence of intermediate integration steps in the discrete
SM-based differentiation. We prove and demonstrate some of
the results briefly announced at the conference (Barbot, Levant,
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Livne, & Lunz, 2016) and, without proofs, in the survey book
chapter (Levant, Levant, & Lunz, 2016). In contrast to Barbot
et al. (2016) and Levant, Levant, and Lunz (2016) we also in-
troduce new homogeneous-discretization methods, consider vari-
able parameter L(t) for differentiators and extend the results to
the non-homogeneous hybrid differentiators recently introduced
in (Levant & Livne, 2018).

The proposed new methods of homogeneous discretization
significantly extend results of Livne and Levant (2014) and restore
the optimal continuous-time accuracy asymptotics (Levant, 2003;
Levant & Livne, 2012; Levant et al., 2017) for considered differen-
tiator types. In that particular case the intermediate integration
steps are shown to neither destroy nor improve the accuracy
asymptotics.

A special implementation case corresponds to the input pro-
duced by an event-triggered sensor, since the sampling-time
intervals become unbounded. Differentiation of such signals by
SM-based technique is a long-standing problem. As a solution
we propose a simple virtual-measurements’ strategy removing
the possible differentiation instability and even providing for the
optimal accuracy asymptotics.
The paper structure. The weighted homogeneity theory and
SM-based differentiators are briefly introduced in Sections 2,
3. Theoretical results are presented in Sections 4, 5. Extensive
numeric experiments are analyzed in Section 6. All proofs are
concentrated in appendices.

Notation. Denote ⌊A⌉
B

= |A|
B sign A if B > 0 or A ̸= 0;

⌊A⌉
0

= sign A. Let f (Ω) = {f (ω) | ω ∈ Ω} for any set Ω and
function f . For any sets Ω, Θ and the binary operation ⋄ define
Ω ⋄ Θ = {ω ⋄ θ | ω ∈ Ω, θ ∈ Θ}, also ω ⋄ Θ = {ω} ⋄ Θ .

∥ · ∥ is the Euclidean norm, Bε = {x| ∥x∥ ≤ ε}. The upper
semi-continuity of a compact-set function F (x), F : Rk

→ 2R
k
,

means that the maximal distance from the points of F (x) to the
set F (y) tends to zero, as x → y.

A statement is said to hold for sufficiently small (large)
v1, . . . , vk > 0, if there exist such w1, . . . , wk > 0 that it holds for
any v1 ≤ w1, . . . , vk ≤ wk (respectively v1 ≥ w1, . . . , vk ≥ wk).

2. Weighted homogeneity of differential inclusions

Let TxRnx denote the tangent space to Rnx at the point x. Recall
that a solution of a differential inclusion (DI)

ẋ ∈ F (x), x ∈ Rnx , F (x) ⊂ TxRnx , (1)

is defined as any locally absolutely continuous function x(t),
satisfying the DI for almost all t . DI (1) is called Filippov DI, if
F (x) is non-empty, compact and convex for any x, and F is an
upper-semicontinuous set function.

Filippov DIs feature existence and extendability of solutions,
but not the solution uniqueness (Filippov, 1988).

Introduce the weights m1,m2, . . . ,mnx > 0 of the coordinates
x1, x2, . . . , xnx in Rnx . Define the dilation dκ (x) = (κm1x1, κm2x2,
. . . , κmnx xnx ) for κ ≥ 0.

Recall (Bacciotti & Rosier, 2005) that a function f : Rnx → Rm

is said to have the homogeneity degree (weight) q ∈ R, deg f = q,
if the identity f (x) = κ−qf (dκx) holds for any x and κ > 0. We
do not distinguish between the weight of the coordinate xi and
the homogeneity degree of the coordinate function cxi (x) = xi:
deg cxi = deg xi = mi.

A vector-set field F (x) ⊂ TxRnx (DI (1)) is called homogeneous
of the degree q ∈ R, deg F = q, if the identity F (x) = κ−qd−1

κ F (dκx)
holds for any x and κ > 0 (Levant, 2005).

Hence, the homogeneity of the vector-set field F (x) ⊂ TxRnx

implies the invariance of DI (1) with respect to the combined

time-coordinate transformation (t, x) ↦→ (κ−qt, dκx), κ > 0,
where −q can be considered as the weight of t , deg t = −q.

The standard definition (Bacciotti & Rosier, 2005) of homoge-
neous differential equations is a particular case here. Note the
difference between the homogeneity degree of a vector function
taking values in Rnx and of a vector field which takes the values
in the tangent space TRnx .

The non-zero homogeneity degree q of a vector-set field can
always be scaled to ±1 by an appropriate proportional change of
the coordinate weights m1, . . . ,mnx .

The contractivity (Levant, 2005) of the homogeneous Filippov
DI (1) is equivalent to the existence of T > 0, R > r > 0, such
that for all solutions ∥x(0)∥ ≤ R implies ∥x(T )∥ ≤ r .

A Filippov DI ẋ ∈ F̃ (x) is called a small homogeneous perturba-
tion of (1) if deg F = deg F̃ , and F (x) ⊂ F̃ (x)+ Bε , F̃ (x) ⊂ F (x)+ Bε

hold for some small ε ≥ 0 and any x ∈ B1.

Theorem 1 (Levant, Efimov, et al., 2016; Levant & Livne, 2016). Let
the Filippov DI (1) be homogeneous, deg F = q. Then its asymptotic
stability and contractivity features are equivalent and robust to small
homogeneous perturbations. If q < 0 the asymptotic stability implies
the FT stability. Moreover, the FT stability of (1) implies that q < 0.

3. SM-based differentiation

Assumption 1. a: The input f (t) = f0(t) + η(t) consists of a
bounded Lebesgue-measurable noise η(t) and an unknown basic
signal f0(t) with the locally Lipschitzian nth derivative satisfying
|f (n+1)
0 | ≤ L0(t) for almost all t and a locally absolutely continuous

function L0(t) > 0. b: The ratio η/L0 is bounded, |η|/L0(t) ≤ ε. The
number ε ≥ 0 is unknown.

Assumption 2. In its turn L0(t) is provided by the additional input
L(t), L(t) > 0, L(t) = L0(t) + ηL(t), where ηL(t) is a Lebesgue
measurable noise, |ηL(t)|/L0(t) ≤ εL, and L0(t) > 0, |L̇0(t)|/L0(t) ≤

M . The number M ≥ 0 is known, εL ∈ [0, 1) is unknown.

The problem is to evaluate the derivatives f (i)0 (t), i = 0, 1, . . . ,
n, in real time.

For example, in the case of the gain-scheduled control (e.g. in
flight control), when the system with the output f (t) is locally ap-
proximated by linear models, L(t),M are roughly determined by
the model matrices and the control. The corresponding function
L(t) is discontinuous.

In the case of constant L we assume that εL = 0, L = L0.

3.1. Homogeneous SM-based differentiators

In this subsection we assume that L = L0 is constant, M = 0.
The following is the recursive form of the differentiator (Levant,
2003). Its outputs zj estimate the derivatives f (j)0 , j = 0, . . . , n, in
FT for constant L = L0, M = 0, εL = 0:

ż0 = −λnL
1

n+1 ⌊z0 − f (t)⌉
n

n+1 + z1,
ż1 = −λn−1L

1
n ⌊z1 − ż0⌉

n−1
n + z2,

...

żn−1 = −λ1L
1
2 ⌊zn−1 − żn−2⌉

1
2 + zn,

żn = −λ0L sign(zn − żn−1).

(2)

An infinite sequence of parameters λi > 0 can be built starting
from any λ0 > 1, which is valid for all natural n (Levant, 2003). In
particular, one can choose (λ0, . . . , λ7) = (1.1, 1.5, 2, 3, 5, 7, 10,
12) (Levant et al., 2017) which is enough for n ≤ 7. In the absence
of noises the differentiator provides for the FT exact estimations.
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