Tetrahedron: Asymmetry 25 (2014) 602-609

Contents lists available at ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

Ring-expanded chiral rhombamine macrocycles for efficient NMR enantiodiscrimination of carboxylic acid derivatives

^a Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering and High Technology Research Center, Kansai University, Suita, Osaka 564-8680. Japan

^b Graduate School of Human and Environmental Studies, Kyoto Univesity, Kyoto 606-8501, Japan

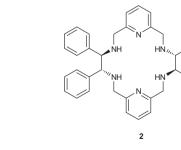
ARTICLE INFO

Article history: Received 21 December 2013 Accepted 7 March 2014 Available online 7 April 2014

ABSTRACT

Novel 46-membered chiral rhombamine macrocycles (R,R,R,R)-8a and 8b were synthesized by [2+2] cyclocondensation reactions of (R,R)-1,2-diaminocyclohexane with the corresponding dialdehydes and subsequent reduction with NaBH₄. The X-ray crystal structure of 1:4 dioxane complex with (R,R,R,R)-**8a** indicated a rhombus conformation of the chiral macrocycle. Compounds (*R*,*R*,*R*,*P*)-**8a** and **8b** were tested as chiral shift reagents for a wide range of α -substituted carboxylic acids and amino acid derivatives. Enantiodiscrimination of ¹H NMR signals was observed with $\Delta\Delta\delta$ values of up to 0.214 ppm. © 2014 Elsevier Ltd. All rights reserved.

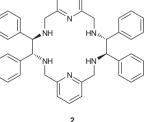
1. Introduction


The use of chiral shift reagents for NMR spectroscopy is one of the most convenient methods for achieving the rapid determination of the enantiomeric excess (ee) of a chiral compound.¹ This method has the advantage of simple implementation without the need for chiral derivatization of the analyte. A wide variety of chiral shift reagents, such as lanthanide complexes, crown ethers, cyclodextrins, and porphyrins, have been developed.² However, reports on chiral macrocyclic compounds as efficient chiral shift reagents remain scarce.³ For example, teraazapyridinophanes **1–3**⁴ and the aza-crown macrocycle **4**⁵ have been reported as chiral shift reagents for carboxylic acids; however, these compounds show

enantiodiscrimination for only a limited number of carboxylic acids. We and Gawronski have reported on chiral triangleamines 5a^{6a} and 5b^{6b,c} as chiral shift reagents for secondary alcohols, cyanohydrins, propargylic alcohols, and some carboxylic acids. Better results for the enantiodiscrimination of carboxylic acid derivatives have been obtained by using phenolic hexaazamacrocycle 6^7 and 30-membered chiral rhombamine macrocyle **7**.⁸ In the latter case, four benzene moieties are involved in the CH- π interactions between the host and guest molecules. Herein we report the synthesis of ring-expanded 46-membered chiral rhombamine macrocyles 8a and 8b with eight benzene moieties and their successful application as chiral NMR shift reagents for a wide range of carboxylic acids and amino acid derivatives.

* Corresponding author. Tel.: +81 06 6368 0861; fax: +81 06 6339 4026. E-mail address: ktanaka@kansai-u.ac.jp (K. Tanaka).

1a: R = H 1b: R = OCH₂Ph


http://dx.doi.org/10.1016/j.tetasy.2014.03.009 0957-4166/© 2014 Elsevier Ltd. All rights reserved.

Tetrahedron

'n⊦

ΝН

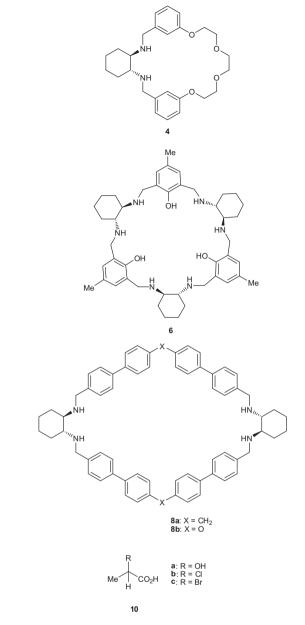
R١

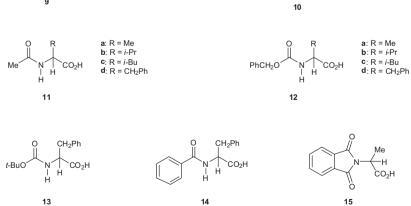
HN

ни

Ŕ

н'n


ΗN


a: R = OH b: R = Me c: R = OMe d: R = Br

7a: X = CH₂ 7b: X = O

CO₂H

5a: R = H 5b: R = Ph

2. Results and discussion

The novel chiral rhombamine macrocyles **8a** and **8b** were synthesized by treating enantiomerically pure (R,R)-1,2-cyclohexanediamine with the corresponding dialdehydes followed by NaBH₄ reduction of the intermediate [2+2] macrocyclic imines, according to a similar procedure to that employed for the preparation of compounds **7a** and **7b**. The identities of **8a** and **8b** were confirmed by electrospray ionization-mass spectrometry and NMR analysis. The structure of (R,R,R,R)-**8a** was determined by X-ray crystal structure analysis. Compound (R,R,R,R)-**8a** crystallized in the triclinic space group P1 and Z = 1. The asymmetric unit contained Download English Version:

https://daneshyari.com/en/article/1345757

Download Persian Version:

https://daneshyari.com/article/1345757

Daneshyari.com