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a b s t r a c t

This paper proposes a new semiparametric estimator of models where the response random variable
is a fraction. The estimator is constructed by optimizing a semiparametric quasi-maximum likelihood
that utilizes kernel smoothing. Under suitable conditions, the consistency and asymptotic normality of
the proposed estimator is established allowing for data-driven bandwidth choices as well as random
trimming, and its flexibility and robustness are showcased in a Monte Carlo experiment and an
empirical application.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Fractional response models arise naturally in the study of
compositional data that concern a wide array of fields, such as
biology, chemistry, economics, geology, and many others (Aitchi-
son, 2003; Kieschnick and McCullough, 2003). The defining char-
acteristic of these data is that they lie within the d-dimensional
simplex Sd

=

{
(y(1), . . . , y(d)) ∈ Rd

: 0 ≤ y(j) ≤ 1, j = 1, . . . , d;∑d
j=1 y

(j)
= 1

}
. When one is interested in their modeling as de-

pendent variables, several estimation methods have been pro-
posed in the statistic and econometrics literature for dealing with
this data structure in a variety of settings. Some of these frame-
works include parametric likelihood methods like the logistic-
normal regression (Aitchison and Shen, 1980; Allenby and Lenk,
1994), beta regression (Ferrari and Cribari-Neto, 2004), Dirich-
let regression (Mullahy, 2015; Murteira and Ramalho, 2016);
quasi-likelihood methods (Papke and Wooldridge, 1996, 2008);
two-part models (Cook et al., 2008; Ramalho and Silva, 2009;
Stavrunova and Yerokhin, 2012), among others (Ramalho and
Ramalho, 2017). Many applications lend themselves to the use
of this approach, such as demand estimation (Woodland, 1979;
Koch, 2015; Velásquez-Giraldo et al., 2018), firm analysis (Loud-
ermilk, 2007; Sosa, 2009) and finance (Ramalho and Silva, 2009;
Stavrunova and Yerokhin, 2012).
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In the case of d = 2, where only one fraction needs to
be modeled, we propose a kernel-based semiparametric quasi-
maximum likelihood estimator (SPQMLE) which adapts Papke
and Wooldridge’s (1996) estimator to an unknown link func-
tion. The proposed adaptation inherits the nice properties of the
original estimator, such as dealing with boundary values—where
the response variable is allowed to take values exactly equal
to 1 or 0—and it is robust to potential misspecification in the
link function. Furthermore, the asymptotic properties are derived
allowing for data-dependent smoothing parameters as well as
possible random trimming. By deriving the exact formula of the
asymptotic variance–covariance matrix for the proposed SPQMLE
it is shown that there is no estimation effect from replacing
the unknown link function by a consistent nonparametric kernel
estimator.

A Monte Carlo experiment provides evidence that our method
performs well in small-sample settings, and this performance is
comparable to the performance achieved by a benchmark maxi-
mum likelihood estimation method (MLE) and a correctly spec-
ified quasi-likelihood method, but uniformly dominates meth-
ods with a misspecified link function. An empirical implemen-
tation of the proposed estimator utilizing data from Papke and
Wooldridge (1996) is also included. Our point estimates are nu-
merically smaller than those originally obtained in Papke and
Wooldridge (1996) and closer to the baseline linear regression
model.

The remainder of the paper is organized as follows: Section 2
introduces the estimator along with its asymptotic properties,
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Section 3 presents the results of our Monte Carlo simulation com-
paring our method with other suitable candidates, while Section 4
presents the results of our empirical application, and Section 5
concludes.

2. Estimator and asymptotic properties

2.1. Estimator

Assume one has access to an independent and identically
distributed (i.i.d.) sample {y ′

i, x
′

i}
n
i=1 from the joint distribution of

(Y ′,X ′) where X and Y are k and d dimensional random vectors
respectively. We will assume that Y takes values in S2. Note
that in this case, one can focus the modeling strategy on one of
the components of Y as the other will then be fully determined.
Specifically, we will center our attention on Y (1), which we will
hereafter denote simply as Y . Given the characteristics of the data
discussed before, we introduce the SPQMLE framework. Let the
following index restriction holds almost surely (a.s.)

E[Yi|xi] = E[Yi|x′

iβ0] ≡ m(x′

iβ0) (1)

for some β0 ∈ B ⊂ Rp and xi ∈ X ⊂ Rp, where X represents the
support of X . We assume f (x|z) is the density of X conditional
on z = X ′β with respect to a measure µ. Our estimator for β0 is
based on the semiparametric quasi-likelihood function

Ln(β) ≡
1
n

n∑
i=1

{yi log[m̂(x′

iβ)] + (1 − yi) log[1 − m̂(x′

iβ)]}̂tni , (2)

where m̂(x′

iβ) estimates the conditional meanM(x′

iβ) = E[m(x′

iβ0)
|x′

iβ], using a (leave-one-out) Nadaraya–Watson estimator given
by m̂(x′

iβ) = Ĝ(x′

iβ)/̂f (x
′

iβ), where Ĝ(x′

iβ) ≡
1
n

∑n
j̸=i yjK̂hn (x

′

jβ −

x′

iβ), f̂ (x
′

iβ) ≡
1
n

∑n
j̸=i K̂hn (x

′

jβ − x′

iβ) with Kh(v) = h−1K (v/h), K (·)

a kernel function, and ĥn a possibly data-dependent bandwidth.
As the dependent variable in this setting is not binary but a
fraction, the likelihood defined in (2) is inherently misspecified
(even with a correctly specified fixedm(·) function), and thus con-
sistent estimation is guaranteed by the index restriction in (1) and
the conditions given in Theorem 1 (see Papke and Wooldridge,
1996, for possible optimality properties of this quasi-likelihood
in the class of the linear exponential family). Let I{·} be the
indicator function that equals 1 when its argument is true, and
0 otherwise. Then, t̂ni ≡ I{̂f (x′

iβ̃) ≥ τn} is a trimming function
based on a preliminary consistent estimator of β0, denoted by β̃,
and τn → 0 as n → ∞ at a rate satisfying Assumption 8 below.
This estimator could be obtained, for example, by maximizing (2)
using t̂ni = I{xi ∈ A}, where A ∈ X is a compact subset. The
proposed estimator is then given by

β̂ = argmax
β∈B

Ln(β) . (3)

2.2. Asymptotic properties

We apply the results in Gourieroux et al. (1984) and Escan-
ciano et al. (2014) to show that our estimator of β0 in (1) defined
by (2)–(3) is consistent and asymptotically normal. We begin by
listing the required assumptions, which set up the model and are
needed to guarantee the properties of kernel estimated functions.
Throughout, C will denote a generic positive constant that is not
necessarily the same.

Assumption 1 (Identification of β0). (i) there are no constant
elements in x, (ii) the first element of x, say x1 is continuous
and its associated component of β0, say β1 = 1, and (iii) if
m(x′β1) = m(x′β2) a.s. (with respect to the measure µ) then

β1 = β2 (these are standard in single index models, see for
example Ichimura, 1993; Klein and Spady, 1993 and Li and Racine,
2007, pp. 251–253).

The following four assumptions are standard and limit the
general set up (Assumptions 2–3), introduce a general rth-order
kernel (Assumption 4) and control the bias present in the non-
parametric estimations (Assumption 5).

Assumption 2. The observations {yi, x′

i}
n
i=1 are an i.i.d. sample

from the joint distribution of (Y ,X ′), satisfying E[|Y |
2+δ

|X = x] <

∞ for almost all x ∈ X and some δ > 0.

Assumption 3. B is a compact set, and β0 ∈ int(B).

Assumption 4. The kernel function K : R → R is bounded, sym-
metric, twice continuously differentiable and satisfies:

∫
K (v)dv

= 1,
∫

vlK (v)dv = 0 for 0 < l < r , and
∫

|vrK (v)|dv < ∞ for
some r ≥ 2. Letting d(j)K (v)/dvj denote the jth derivative of K (·),
we further assume that for j = 1, 2, |d(j)K (v)/dvj

| ≤ C , and for
some s > 1, |d(j)K (v)/dvj

| ≤ C |v|
−s for |v| > Lj, 0 < Lj < ∞.

Assumption 5. For all β and x ∈ X , f (x′β), m(x′β), and f (x|z) are
r-times continuously differentiable in z = x′β, with all functions
and derivatives being uniformly bounded.

Assumption 6. The possibly data-dependent bandwidth ĥn satis-
fies Pn(an ≤ ĥn ≤ bn) → 1 as n → ∞, for deterministic sequences
of positive numbers an and bn such that bn → 0, b2rn n → 0 and
a3nn/log n → ∞, for r as given by Assumption 4.

The final assumptions adapt those in Escanciano et al. (2014)
(specifically, see their Assumptions 5, B.7, B.8, and C.1) to guar-
antee uniform convergence of the estimated functions and their
derivatives while allowing for data-dependent bandwidths such
as those obtained by plug-in rules and cross-validation (Andrews,
1995), as well as deal with random trimming. Let t̂ni ≡ I{xi ∈

X̂n} represent a trimming function where X̂n ⊂ X could po-
tentially be the result of an estimation procedure, such as a
subset based on values of f̂ . Let Xn represent a deterministic
set and define tni ≡ I{xi ∈ Xn}, as well as the rate dn ≡

(max{log 1/an, log log n}/ann)1/2 + brn.

Assumption 7. The following two conditions are satisfied:
(i) there is a sequence τn of positive numbers satisfying τn ≤

infβ∈B,x∈Xn f (x′β), d4nn/τ
6
n → 0 and dn/τn → 0; and (ii) Pn(X i ∈

Xn) → 1 as n → ∞ and E[|̂tni − tni|] = o(n−1/2).

Finally, in order to ensure that the estimated conditional mean
asymptotically belongs to a sufficiently well-behaved class, we
can further introduce the rate dmn ≡ (max{log 1/an, log log n}/a3n
n)1/2.

Assumption 8. The rate dmn is such that dmn = O(1).

The main result of the paper is summarized by the following
theorem (a corresponding outline for the proof can be found in
the supplemental material)

Theorem 1. Given Assumptions 1–5 and 6–8, β̂
p

→ β0 and
√
n(̂β − β0)

d
→ N(0,A−1BA−1), where

A = E
{

m′(X ′β0)2

m(X ′β0)[1 − m(X ′β0)]
(X − E[X |X ′β0])

×(X − E[X |X ′β0])
′

}
, (4)
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