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a b s t r a c t

Using recent developments of non-equilibrium thermodynamics, we introduce an effec-
tive temperature for active colloidal systems, which is a product of two factors. The first
one arises due to the motor activity and describes the randomized motion of the active
particles, whereas the second one is a consequence of the ordered (collective) motion
due to the alignment effects or initially ordered configuration. These factors depend on
the corresponding characteristic velocities: the first one is expressed in terms of the
propelled (swimming) velocity of an individual active particle, while the second one —
in terms of the local drift velocity, which characterizes the collective motion of the active
particles and plays a role analogous to that of an order parameter. The behavior of the
active systems is governed by the interplay between these two factors, which leads to
a hierarchy of anomalous diffusion regimes with different characteristic time scales and
corresponding effective diffusion coefficients.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The question of what precisely is a ‘‘local temperature’’, which has a well-established meaning only in global
equilibrium, arises in any physical situation under far from equilibrium conditions, particularly, in granular matter, sheared
fluids, amorphous semiconductors, glasses, shockwaves, biological and climate systems, turbulent fluids or chaotic systems
or, in a spatially smaller scale, nuclear materials and nanoscale systems among others [1–18]. Different concepts of non-
equilibrium temperature and entropy have been discussed in thermodynamic and microscopic approaches, including
information theory, kinetic theory of gases, fluctuation–dissipation theorem (FDT) and computer simulations [1–18].
Several effective non-equilibrium temperatures may be defined, all of which reduce to a common value in equilibrium
states, but which yield different results in non-equilibrium situations. For glassy systems, the definition of the equilibrium
temperature has been extended to the non-equilibrium regime, showing up as an effective quantity in a modified version
of the FDT [10]. Glasses are out-of-equilibrium systems in which thermal equilibrium is reached by work exchanged
through thermal fluctuations and viscous dissipation exchange that happens at widely different timescales simultaneously.

Recently, active colloidal particles has emerged as a novel class of the active systems that is currently under intense
scrutiny [19–28]. The active systems consume energy from environment or from internal fuel tanks and dissipate it
by carrying out internal movements, which imply that their behavior is more ordered and thus intrinsically out of
equilibrium. Realizations of active matter in biology are manifold and exist at different scales. Some of them are:
active colloids, bacterial suspensions and cytoskeleton in living cells [19–28]. Understanding the generic properties of
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active systems and the collective motion of active colloidal suspensions poses fundamental and challenging questions of
nonequilibrium thermodynamics and statistical physics. For the active colloidal systems, the definition of the effective
(nonequilibrium) temperature has also come from the extensions of the FDT [19–28].

In this paper we use the definition of the effective temperature for the nonequilibrium systems taking into account
the ordered motion of the energy carriers [6,7], which is briefly discussed in Section 2. In Section 3 we use this definition
to describe the effective temperature of active system with allowance for the ordered effects and combine it with the
effective temperature due to the FDT. Conclusion is made in Section 4. Appendix A briefly describes the effective diffusion
coefficient of colloidal particles due to the system activity, which defines the FDT temperature. Appendix B demonstrates
that the interplay between the Brownian diffusion of colloidal particles and the system activity leads to the minimum in
the dependence of the effective diffusion coefficient on the particle size.

2. Effective temperature and entropy of passive systems with ordered motion

2.1. Effective temperature and entropy in systems with energy flux

Let us consider 1D system, which consists of two groups of energy carriers — one group moves on the left and another
on the right [3,7,18]. This so-called two group (TG) approach yields the evolution equations for the temperature of the
carriers as follows [7]
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where T1(x, t) is the kinetic temperature of the heat carriers going to the right, T2(x, t) is the kinetic temperature of the
heat carriers going to the left, v is the average velocity of heat carriers. Different formulations of the TG approach, similar
to Eqs. (1)–(2), including Boltzmann transport equation with single relaxation time approximation, have been successfully
used to study heat and mass transfer problems (see [2–7] and references therein). The corresponding average temperature
T and heat flux q are given as

T = (T1 + T2)/2 (3)

q = vcp(T1 − T2)/2 (4)

where cp is heat capacity. After some algebra, Eqs. (1)–(4) give
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Eq. (5) represents the energy conservation law, whereas Eq. (6) is the modified Fourier law where v2τ cp = λ is thermal
conductivity. Combining Eqs. (5) and (6), one obtains well-known hyperbolic heat conduction equation (HHCE) [1–7]
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The temperatures of the heat carriers moving to the right, T1, and moving to the left, T2, can be represented as [7]

T1 = T + q/vcp (8)

T2 = T − q/vcp (9)

It should be stressed here that the temperatures T, T1 and T2 in Eqs. (1)–(9) characterize the corresponding local energy
density, i.e. are so-called kinetic temperatures [7]. In particular, the kinetic temperature T, which space–time evolution
is governed by the HHCE, Eq. (7), characterizes the local energy density of the nonequilibrium state — it is equal to the
equilibrium temperature of the same system with the same internal energy in equilibrium. It implies that if a local volume
element of the nonequilibrium system consisting of the two groups of the heat carriers with the temperatures T1 and T2
is suddenly isolated, i.e. bounded by adiabatic and rigid walls, and allowed to relax to equilibrium, after equilibration the
equilibrium temperature of the local element will be Teq = (T1 + T2)/2. However, if the two groups of the heat carriers
with T1 and T2 equilibrate reversibly, i.e. while producing work, their common equilibrium temperature θ will be [6,7]:

θ = (T1T2)1/2 (10)

Indeed, before equilibration the total equilibrium entropy of the two groups is equal to Seq = kB ln T1 + kB ln T2 =

kB ln T1T2, whereas after equilibration Seq = 2kB ln θ . The entropy change during the equilibration is

∆S = Sneq − Seq = kB ln T1T2/θ2 (11)
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