Journal Pre-proof

Effects of utilizing nanofluid as working fluid in a lab-scale designed FPSC to improve thermal absorption and efficiency

Majid Ahmadlouydarab, Mohammad Ebadolahzadeh, Hafiz Muhammad Ali

PII: S0378-4371(19)31753-4

DOI: https://doi.org/10.1016/j.physa.2019.123109

Reference: PHYSA 123109

To appear in: Physica A

Received date: 18 May 2019 Revised date: 2 October 2019

Please cite this article as: M. Ahmadlouydarab, M. Ebadolahzadeh and H.M. Ali, Effects of utilizing nanofluid as working fluid in a lab-scale designed FPSC to improve thermal absorption and efficiency, *Physica A* (2019), doi: https://doi.org/10.1016/j.physa.2019.123109.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier B.V.

Journal Pre-proof

Effects of utilizing nanofluid as working fluid in a lab-scale designed FPSC to improve thermal absorption and efficiency

Majid Ahmadlouydarab^{a*}, Mohammad Ebadolahzadeh^a, and Hafiz Muhammad Ali^b

- ^a Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, East Azerbaijan, 51666-16471, Iran b Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Corresponding author: mahmadlouydarab@tabrizu.ac.ir

Abstract

The significance of using renewable energy has led to huge amount of studies on increasing the efficiency of the systems using these energies. The flat plate solar collector (FPSC) is one of the most common types of these systems. In this experimental study, we have made a change within the structure of a lab-scale flat-plate solar collector, and have increased its efficiency for public use. To this aim, a nanofluid containing TiO₂ particles was used as working fluid which does not circulate inside the FPSC. Purified water as the agent fluid was circulating inside the piping system and water storage tank. As a direct result, this mechanism increases the FPSC lifetime and reduces the costs compared to that of old versions. Moreover, a layer of N-TiO₂ particles was applied on the outer side of the FPSC collector glass surface. This technique improves the self-cleaning properties of the surface, and also enhances the collector thermal efficiency. Studied range for volume fraction of TiO_2 particles was from 0.1 % to 5%. The optimum volume fractions of TiO_2 particles were utilized to study the collector performance. The measured average diameter of the TiO_2 particles was about 20 nm. The nanofluid was prepared using a two-step method and by adding a sodium dodecyl sulfate (SDS) as surfactant. Results indicated that, using the nanofluid as working fluid, the collector efficiency was increased by about 45% and 17% for the volume fractions of 5% and 2.5% of TiO₂ nanoparticles, respectively. Besides, an increase in the TiO_2 particles volume fraction led to increment in absorbed heat by FPSC. Additionally, effects of initial temperature of tank water i.e. 0°C, 10°C, 20°C, and 30°C on the thermal efficiency was studied. Increasing the initial temperature showed positive influence on the efficiency. Moreover, regardless of whether the thermal connection is disconnected or connected, the collector does not lose its efficiency.

Keywords

Flat plate solar collector (FPSC); nanofluid; working and agent fluid; thermal efficiency; thermal absorption and retention.

1. Introduction

These days, most of the countries are looking for a variety of solutions to eliminate their air pollution. On the other hand, people still insist on utilizing resources such as fossil fuels,

Download English Version:

https://daneshyari.com/en/article/13461671

Download Persian Version:

https://daneshyari.com/article/13461671

<u>Daneshyari.com</u>