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A B S T R A C T

Public transportation is a key element to vivid city life. Understanding the dynamics and driving forces of public
transportation ridership can be a very rewarding task. It is, however, a highly complex construct. In this re-
search, we focus on a spatial viewpoint, which has seen little attention: the link level. It represents the trip of a
vehicle between directly connected stations. Additionally, we put emphasis on the impact of exogenous events.
In order to assess their spatio–temporal influences, a temporal resolution of 30min complements the spatial link
level. Ridership data for trams and buses is provided by Stadtwerke München (SWM), which is the operator of
the public transportation network in Munich, Germany, including 82 bus and 17 tram lines. About 30% of trams
and 50% of buses are equipped with automatic passenger counting sensors, which capture boarding and
alighting at each individual station. The equipped vehicles are strategically placed by SWM to obtain a mean-
ingful view on the whole system. The raw sensor data is cleaned and sanitized. The data we are using spans a
4–year period (2014–2017). Following a pre–processing step, ∼59.79% of the data is considered, which equates
to ∼97 million observations. There are 693 tram links and 2944 bus links, which makes 3637 links in total. We
distinguish the analysis in ridership prediction and inference. For prediction, we specify one model functional
form and build this model for each link, using 5–fold cross–validation to avoid overfitting. We employ decision
trees, combining them with bagging and boosting. We then perform inference, i.e. attempt to understand the
relationship between the variables that emerged in the predictive models. Ridership is assessed for each link
separately and visualized together in order to construct network views and maps. Conclusions are drawn, and
recommendations for future research are formulated.

1. Introduction

Public transportation is a key element to vivid city life; for example,
Cervero (2009) states that “replacement of elevated freeways with
greenways, boulevards, and public transit can improve neighborhood
quality and increase land values”. Understanding the dynamics and
driving forces of it always proves useful; for example, Jifeng et al.
(2008) use system dynamics to model urban transportation systems and
present a case study analyzing the public transportation network of the
Dalian Central City in China. It is, however, a highly complex construct.
A variety of factors come into play and the interactions between them
are not simple (Tyrinopoulos and Antoniou, 2008). Furthermore, public
transportation can be viewed at from different angles. From longterm
developments for city planning purposes to short–term disturbances for
real–time passenger information systems and everything in between;
different spatial and temporal viewpoints exist and each of them

demands a separate approach.
In this research, we focus on a spatial viewpoint, which has seen

little attention: the link level. It represents the trip of a vehicle between
directly connected stations. Additionally, we put emphasis on the im-
pact of events. In order to assess their spatio–temporal influences, a
temporal resolution of 30min complements the spatial link level.

A large stream of literature discusses direct ridership models (DRM)
(Gutiérrez et al., 2011; Jun et al., 2015; Chakour and Eluru, 2016;
Peterson, 2011; Choi et al., 2012; Liu et al., 2014; Cervero et al., 2010).
These models describe the long–term development of public transpor-
tation ridership using socio–economic, demographic and built–envir-
onment variables. Ridership is aggregated monthly or daily and ana-
lyzed at station level, i.e. the number of passengers boarding and/or
alighting at a specific station is targeted. Built–environment variables
refer to the properties of the station and its surroundings, while so-
cio–economic and demographic variables may refer to the area around
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the station or to a more general context, e.g. growth domestic product.
Another stream of literature investigates the effects of weather on ri-
dership (Li et al., 2015, 2017; Stover and McCormack, 2012; Tao et al.,
2016, 2018; Kashfi et al., 2015; Zhou et al., 2017; Trépanier et al.,
2012). Other approaches are of course also considered, e.g. Chen et al.
(2009) examine the relationship between the local environment of
stations and their usage over day in New York City, using card data
which records entrances at stations, Ceapa et al. (2012) address the
regular weekday commute–based pattern of stations in London,
Bhattacharya et al. (2013) propose a Gaussian process–based model to
predict the number of people entering a bus at station level, Foell et al.
(2015) investigate a two month period in Lisbon using individual his-
tories about bus rides containing line, stop, and arrival time conducted
by individual users. Despite their intuitive importance, only few papers
address the effect events can have on public ridership. Rodrigues et al.
(2013) developed a framework to use event data from the web for
Singapore, and Rodrigues et al. (2017) propose a Bayesian additive
model for the same problem statement.

Two methods to collect ridership data are individual smart cards
and automatic passenger counting (APC) systems. A smart card is a
personalized card, which has to be used at the origin and destination
stations. Thus, the smart card records the origin and destination for
each trip made by a certain individual, along with further information,
e.g. time of trip and travel mode used. Automatic passenger counting
systems capture the number of people entering and exiting vehicles at
stations. These may be implemented e.g. as infrared sensors or treadle
mat sensors (Pinna et al., 2010).

Table 1 provides a taxonomy of a number of relevant papers ac-
cording to their spatiotemporal viewpoint and the data being used. It is
apparent that station level ridership has been studied extensively, but
no study could be identified which considers the link level. The dif-
ference between station and link level, however, is substantial. On a
link level, the ridership present in a certain vehicle is assessed, whereas
on a station level the boardings/alightings at a certain station are
considered. When only the boardings and alightings are considered, the
aspect of direction is ignored. A link inherently includes direction, as it
is defined by a start station and an end station. The level of crowded-
ness can vary significantly for a vehicle depending on the direction it is

heading towards. For example, a station may have a lot of boardings in
the morning, but it could be that the crowdedness of vehicles heading
into different directions from this station differ. However, inspecting
the link level makes it a lot harder to relate environmental factors with
ridership. This is because, when considering the station level, each
station is fixed and can be described by a fixed set of environmental
variables (e.g. built environment, land–mix). Links, on the other hand,
cannot be abstracted by these variables. One could imagine to describe
a link by its start and end stations' characteristics, but, as a link in-
herently is part of a bigger route, this description does not work.

Few papers address actual prediction of ridership (Bhattacharya
et al., 2013; Ceapa et al., 2012; Rodrigues et al., 2013, 2017). As
mentioned, much more emphasis is placed on the aspect of inference.
One possible reason for this may be that inference is possibly seen as
more valuable than prediction in the context of public ridership. If the
driving forces behind public transportation usage are known, these can
be consciously influenced. Another possible reason may be that the
importance of influence factors change when shifting from a more
coarse grained temporal view, like weekly or daily, to a more fine
grained temporal resolution like hourly, as a diurnal usage pattern has
to be addressed. Classical variables, like socio–economic features, lose
importance in this setting.

Finally, the impact of events on ridership has been largely ne-
glected, which can be attributed to poor information availability and
the difficulty of measuring their impact (Rodrigues et al., 2013). The
few available references (Rodrigues et al., 2013, 2017), which address
the effect of events, focus on certain venues and the impact on arriving
passengers for these locations. To the best of the authors' knowledge,
impact of events on the whole network has not been studied.

Consolidating the above mentioned points, in this research we
concentrate on a fine grained temporal (30min) and spatial resolution
(the link level). Furthermore, we quantify and assess the impact of lo-
calised events on network–wide ridership. Specifically, we want to
address prediction of and inference about the actual number of pas-
sengers in a vehicle belonging to a given line and heading in a given
direction, for a certain point in time and location, and how it may (or
may not) be affected by various events in the network.

Table 1
Categorization of relevant research.

Paper Temporalb Spatial c Data d

M W D TD m N R S OD APC SC Other/NA

DRMa Gutiérrez et al. (2011) X X X
Jun et al. (2015) X X X
Chakour and Eluru (2016) X X X
Peterson (2011) X X X
Choi et al. (2012) X X X
Liu et al. (2014) X X X
Cervero et al. (2010) X X X

Weather Li et al. (2017) X X X
Li et al. (2015) X X X
Stover and McCormack (2012) X X X
Tao et al. (2016) X X X
Tao et al. (2018) 60 X X X
Zhou et al. (2017) X X X X

Other Chen et al. (2009) X X X
Ceapa et al. (2012) 10 X X
Bhattacharya et al. (2013) 60 X X
Kashfi et al. (2015) X X X
Foell et al. (2015) X X
Rodrigues et al. (2013) 30 X X
Rodrigues et al. (2017) 30 X X

a Direct ridership models.
b Y=Yearly, M=Monthly, W=Weekly, D=Daily, TD=Time of Day, m=minute resolution.
c N=Network, R=Route, S= Station, OD=Origin–Destination.
d APC=Automatic Passenger Counting, SC=Smart Card.

S. Karnberger and C. Antoniou Journal of Transport Geography 82 (2020) 102549

2



Download English Version:

https://daneshyari.com/en/article/13466518

Download Persian Version:

https://daneshyari.com/article/13466518

Daneshyari.com

https://daneshyari.com/en/article/13466518
https://daneshyari.com/article/13466518
https://daneshyari.com

