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Abstract

The efficient use of resources is one of the most important things in the current development. In the field of lightweight
constructions, rubber and reinforced polymer composite materials become more and more important. This constantly increases
the demands on the simulation software. The development of robust and efficient algorithms for these simulations is the aim
of this paper.

The application of higher order finite elements in space has a good influence on solution quality in space, but causes a higher
computational cost compared to linear elements. We propose higher order finite elements in space and time in combination
with a reinforced viscoelastic material formulation in a variational framework. Therefore, a higher order approximation in
space and time is applied. The application of variational based time integrators guarantees the preservation of the total balance
of linear momentum and the total balance of angular momentum. In order to fulfill the total balance of energy, an extension
with discrete gradients is developed for the variational framework. The achieved time stepping scheme represents a very robust
and consistent algorithm for the application of transient finite element simulations with reinforced viscoelastic materials and
boundary conditions.

In an implementation, however, the higher order approximation in space and time combined with the viscoelastic material
suffers from a high computational effort. Hence, an efficient implementation is required in order to reduce the computational
time to a minimum. In our approach, we face this problem by using a GPU and the programming architecture Cuda from
NVIDIA, which allows a massive parallelization of time-consuming parts of the simulation. We introduce a pipeline design
for the GPU implementation, which provides multiple advantages. This design allows a simple porting of an already existing
implementation by means of self-managing pipeline-stages. However, a significant speedup is still achieved due to further
optimizations which exploit the architecture of GPUs. In addition, when combining both hardware resources GPU and CPU
the computational time can be reduced significantly once more. Therefore, our GPU implementation easily allows a distribution
of computational effort between both GPU and CPU. Finally, we show in numerical examples the reached speedup of this
approach, and the impact of combining the GPU and the CPU is studied in detail.
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1. Introduction

The increasing development of lightweight construction in the automotive and aircraft fields caused the
application of more complex materials. Therefore, the use of viscoelastic materials is essential, because effects like
relaxation and dumping cannot be reproduced by hyperelastic materials. Furthermore, different materials classes
are combined to new materials that depend on several material properties like reinforced viscoelastic materials. To
represent the physical properties of the real material in simulations the requirements increase continuously relating
to the robustness and efficiency. Therefore, we present an application of different material formulations in one
example to cover a large field of real materials. This includes the application of several formulations based on a
NEO-HOOKIAN and SAINT VENANT-KIRCHHOFF model for the elastic and viscoelastic parts, further information
are listed in Reference [11,12,21]. The extension to a reinforced viscoelastic material formulation is based on the
work of [1].

Compared to linear elements in space, higher order elements in space require more computational effort, but
in cases of very accurate solutions they can produce faster results, see References [3,15,18]. Motivated by this
approach, we compare the use of different approximation orders in space to extend the work of [2].

Beside the approximation in space and the material formulation the time stepping scheme have to be kept in
mind. The stability and the robustness strictly depend on the chosen approximation and the order of approximation
in time. A very robust class of time stepping schemes are variational integrators, see [13]. A mechanical system
can be formulated by a LAGRANGE function. Compared to [4], the approximation in time does not start with the
equations of motion but with the approximation in the LAGRANGE function. The advantages of this formulation are
the preservation of the total balance of linear momentum and the total balance of angular momentum. The linear
approximation of the LAGRANGE function can be extended to a higher order approximation and can also be used
to formulate constraint systems, see [16,20]. The disadvantage of this concept is that the error in the total balance
of energy is only bounded but not exactly fulfilled. Therefore, we adapt the concept of discrete gradients from [9]
in the same way like [12]. This leads to a time stepping scheme of higher order accuracy and preservation of the
total balance of energy. In order to achieve an efficient implementation in addition to the physical accuracy, we
show an opportunity for an implementation and parallelization on a GPU.

So-called general-purpose graphics processing units “GPGPU” are nowadays commonly used for accelerating
various applications, e.g. high performance finite elements as in [8], where especially linear algebraic operations
are accelerated. Compared to a CPU, a GPU is specialized in performing the same instruction on multiple data
sets in parallel which leads to a high level of computational parallelism. In fact, linear algebraic operations like
matrix–vector operations and matrix–matrix operations benefit from this feature, and with CUBLAS, see [5], a
library already exists to accelerate such operations. However, even though those libraries are specialized on BLAS
operations, they suffer from performance loss when e.g. a great number of matrix–vector operations with few
entries is required. Furthermore, in cases where self-written code provides a significant speedup in comparison to an
equivalent BLAS function, e.g. due to adaptions to the problem, it should be possible to port this code on the GPU.
Therefore, we want to introduce an implementation in C and C++ for the GPU, which not only focuses on these
BLAS operations. Our approach follows a pipeline design and uses the programming architecture Cuda in order
to exploit the maximum possible performance of NVIDIA GPUs like the TESLA K20C. The pipeline consists of
multiple stages, which either execute self-written and ported code or functionalities from libraries, and are optimized
for the GPU based on [6,7,17,19]. These stages are connected with their predecessors and successor and the pipeline
manages them and guarantees the right of execution and synchronization with the CPU. Additionally, the pipeline
design allows further improvements, e.g. pipeline splitting in order to overcome the limited amount of memory
space on the GPU and the parallel execution of stages based on the functionality of streams on Cuda. Another
crucial advantage is the ability of distributing computational effort easily between the GPU and CPU to increase
the speedup significantly. However, the impacts of the distribution on the performance have to be studied as well
to assure the maximum utilization on both hardware resources, the GPU and CPU.

In this work Section 1 contains a brief summary of the developed time stepping schemes with a higher order
approximation in time. The GALERKIN variational integrators have the advantages that, first, they are very robust
and, second, preserve the balance of total linear momentum and the balance of total angular momentum. However,
they cannot preserve the balance of total energy in the order of the NEWTON tolerance.

In Section 2 we introduce a discrete gradient that bounds the balance of the total energy in the order of the
Newton tolerance. This section also includes the theoretical conservation of the balance of total linear momentum,
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