

Contents lists available at ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

Amino alcohol-mediated enantioselective syntheses of α -substituted indanones and tetralones, ammonium enolates as key intermediates

lacques Muzart*

CNRS-Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, UMR 7312, UFR des Sciences Exactes et Naturelles, BP 1039, 51687 Reims Cedex 2, France

ARTICLE INFO

Article history: Received 13 February 2014 Accepted 26 February 2014

ABSTRACT

Optically active 2-substituted-1-indanones or 2-substituted-1-tetralones are isolated from amino alcohol-mediated asymmetric domino reactions of α -disubstituted ketones, β -ketoesters, enol carbonates, α,β -unsaturated ketones, a silyl enol ether, or a β -ketoacid, with some of these reactions occurring under UV-light irradiation or Pd catalysis. The absence of a relationship between the nature of the substrate and the absolute configuration of the ketone produced is due to the protonation of a common ammonium enolate as the key enantioselective step. The enantioselectivity depends on various factors, which indicates the occurrence of side pathways.

© 2014 Elsevier Ltd. All rights reserved.

Contents

1.	Introduction	697
2.	The photochemical approach.	697
3.	The palladocatalyzed approach	699
	3.1. Domino process initiated by a Tsuji–Trost reaction	699
	3.2. Domino processes initiated by a hydrogenolysis reaction	699
	3.3. Domino processes initiated by an O—Si bond cleavage	700
	3.4. Domino processes initiated by C=C bond hydrogenation	700
4.	Decarboxylation of β -ketoacids	701
5.	A common type of intermediate	701
6.	Conclusion	
	References	704

1. Introduction

Over the past few years, the enantioselective protonation of prochiral enolic species has emerged as a powerful method for the synthesis of optically active ketones and esters. This reaction is, conceptually, particularly simple. Various procedures have been developed, but the nature of the key intermediate and the factors governing the differentiation of its enantiotopic faces often remain a matter of debate. Our contribution to this topic concerns enantioselective syntheses mediated by unichiral aminoalcohols AH*, of 2-substituted-1-indanones K-5 and 2-substituted-1-tetralones K-6 from; (i) the photochemical reaction of

Herein our aim is to discuss the mechanisms and to point out the similarities in the intermediates leading to enantioenriched **K-5** and **K-6** from these different substrates and experimental conditions.

2. The photochemical approach

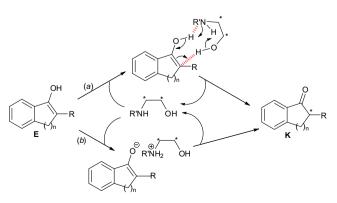
Irradiation of ketones such as $\alpha \mathbf{K}$ at $\lambda = 366$ nm leads to Norrish type II reactions, that is, the cleavage of the C—C(*i*-Pr) bond, to afford \mathbf{K} via an enol as intermediate (Scheme 2).¹⁵

α-disubstituted ketones αK , 4 (ii) the Pd-catalyzed reaction of β-ketoesters ^{Al}KE and ^{Bn}KE , $^{5-7}$ enol carbonates ^{Al}EC and ^{Bn}EC , $^{6-8}$ α,β-unsaturated ketones UK, 9 trimethylsilyl enolate $ES-5_{Me}$; 10 or (iii) the decarboxylation of β-ketoacids KA^{11} (Scheme 1). Baiker and co-workers have reinvestigated these enantioselective stereoablative 12 reactions of ^{Bn}KE and $KA-6_{Me}$. 13,14

^{*} Tel.: +33 3 26 91 32 37; fax: +33 3 26 91 31 66. E-mail address: jacques.muzart@univ-reims.fr

Scheme 1. Main compounds contained within this report.

$$\begin{array}{c|c}
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$


Scheme 2. Norrish-type II reaction of αK .

Carried out in the presence of catalytic amounts of AH^* , such a photolysis of $\alpha K-5_{Me}$, $\alpha K-6_{Me}$, and $\alpha K-6_{Bn}$ leads to $K-5_{Me}$, $K-6_{Me}$, and $K-6_{Bn}$, respectively, with enantiomeric excesses (ee's) of up to 89% (Eq. 1).⁴ One important drawback of this photochemical synthesis is the Norrish type I photoreactivity of K, that is, the homolytic cleavage of the CO—CR bond. Since αK and K have similar UV spectra, the possibility for this reversible photocleavage that causes the racemization of K, increases with the conversion of αK . Consequently, moderate conversions of αK are required to obtain fair ee's.

Monitoring the photolysis of α K- $\mathbf{5}_{Me}$ by 1 H NMR and UV spectroscopy, in the absence of \mathbf{AH}^{*} , has led to the characterization of enol $\mathbf{E-5}_{Me}$ (δ = 1.96 (Me) and 3.16 (CH₂) ppm; λ_{max} = 265–270 nm)^{4a,16} and the observation of its quantitative conversion into $\mathbf{K-5}_{Me}$ by the addition of $-\mathbf{Ep.}^{4a}$ Since the solution obtained after this addition gave circular dichroism signals identical to those obtained from the irradiation of a mixture of α K- $\mathbf{5}_{Me}$ and $-\mathbf{Ep.}^{4a}$ the involvement of the enol in the interactions with \mathbf{AH}^{*} giving rise to an asymmetric pathway was estab-

lished. The asymmetric transformation of αK only requires organocatalytic conditions since the $E \to K$ reaction is more rapid than the $\alpha K \to E$ reaction, hence an AH^*/E ratio superior to 1 throughout the photolysis.

Given initial studies on photodienols, ¹⁷ we first suspected an $\mathbf{E} \to \mathbf{K}$ reaction occurring via a nine-membered ring intermediate formed by polar interactions between the enol and the two functionalities of \mathbf{AH}^* (Scheme 3, path a); ^{4b} however literature reports ¹⁸ and subsequent studies ¹⁹ led us to propose the participation of an ammonium enolate (Scheme 3, path b).

Scheme 3. Plausible enantioselective pathways from **E**.

Download English Version:

https://daneshyari.com/en/article/1347225

Download Persian Version:

https://daneshyari.com/article/1347225

<u>Daneshyari.com</u>