

Contents lists available at ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

Asymmetric synthesis of (+)-lentiginosine using a chiral aziridine based approach

Hojong Yoon a, Kyung Seon Cho a, Taebo Sim a,b,*

^a Chemical Kinomics Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea

^b KU-KIST Graduate School of Converging Science and Technology, 145, Anam-ro, Seongbuk-gu, Seoul 136-713, Republic of Korea

ARTICLE INFO

Article history: Received 7 November 2013 Accepted 11 February 2014 Available online 14 March 2014

ABSTRACT

The synthesis of the indolizidine alkaloid, (+)-lentiginosine, is described. A key feature of the preparative route is the efficient and stereoselective construction of a dihydroxylated pyrrolidine via Sharpless asymmetric dihydroxylation of an aziridine-enoate, which was prepared from commercially available $1-(S)-\alpha$ -methylbenzylaziridine-2-methanol. In addition, a regioselective aziridine-to-pyrrolidinone ring expansion process followed by a Wittig olefination was employed to construct a late stage pyrrolidine intermediate that was transformed into (+)-lentiginosine.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Glycosidases are enzymes that catalyze glycoside hydrolysis reactions that occur in numerous anabolic/catabolic processes in living systems.¹ Since blocking these enzymes can be used as a general strategy to treat various diseases, the development of potent and selective glycosidase inhibitors is in high demand. Since nojirimycin, a natural glycosidase inhibitor, was isolated and characterized from a *Streptomyces* strain in 1966,² a number of glycosidase inhibitors that possess carbosugar and iminosugar like structures have been developed. These inhibitors have received great attention because of their interesting anti-diabetic, antitumor metastasis, anti-HIV, anti-influenza, and pharmaceutical properties.³ Especially interesting in this regard are the iminosugar type glycosidase inhibitors miglitol (Glyset[®]), a drug used for the

treatment of type II diabetes mellitus, ⁴ and miglistat (*N*-butyl-deoxynojirimycin, Zavesca[®]), a drug employed for the treatment of Gaucher's disease.⁵

(+)-Lentiginosine **1**, an indolizidine alkaloid that was first isolated from *Astragalus lentiginosus* in 1990 by Elbein et al.⁶ (Fig. 1), has been reported to be a selective and highly potent inhibitor (IC₅₀ = 0.43 μ g/L) on amyloglucosidase.¹ Furthermore, Piaz et al. in 2011 reported that (+)-lentiginosine has anti-Hsp90 activity.⁷ These observations make this dihydroxylated indolizidine an interesting lead compound for drug discovery. In addition to its interesting biological activities, (+)-lentiginosine **1** has an attractive chemical structure because it contains three contiguous and functionalized stereogenic centers. As a consequence of these features, new strategies for the preparation of this iminosugar would have both synthetic and biomedical significance.

Figure 1. Naturally occurring polyhydroxylated indolizidines.

^{*} Corresponding author. Tel.: +82 2 958 6437; fax: +82 2 958 5189. E-mail address: tbsim@kist.re.kr (T. Sim).

Several routes have been developed for the synthesis of (+)-lentiginosine, all of which employ modern synthetic methods to accomplish the key steps. Successful approaches to this target have relied on a variety of processes including (1) RCM to generate a piperidine backbone;8 (2) dihydroxylation of an (E)-unsaturated ester; 8b,9 (3) an Aza-cope rearrangement and tandem Mitsunobu reaction/[3.3]-sigmatropic rearrangement of an azide; 10 (4) a sequential enantioselective diethylzinc addition and [3.3]-sigmatropic rearrangement of an allylcyanate; 11 (5) intramolecular radical cyclization of an acylsilane; 12 (6) a coupled catalytic asymmetric Heck-type cyclization and stereoselective epoxidation; ¹³ (7) stereospecific alkene bromohydration using a chiral β-hydroxy- γ , δ -unsaturated sulfoxides; ¹⁴ (8) asymmetric deoxygenation of a quaternary α -hydroxypyrrolidine derivative derived from D-xylose; 15 (9) thermal rearrangement of an isoxazolidine derived by using a 1.3-dipolar cycloaddition reaction of a nitrone: 16 and (10) organometallic addition to a nitrone followed by reduction and RCM.¹⁷ Importantly, most of reported routes begin with nonracemic chiral starting materials that are derived from naturally occurring sugars or acids.8a,c,11-13,16-18

In continuing studies focused on the synthesis of biologically and structurally interesting alkaloids, we have developed a novel and efficient approach to the synthesis of (+)-lentiginosine ${\bf 1}$, which began with the use of the commercially available 1-(S)- α -methylbenzylaziridine-2-methanol ${\bf 6}$. The route uses a key Sharpless asymmetric dihydroxylation reaction of an (E)-aziridine-enoate, derived from ${\bf 6}$, and a regioselective aziridine-to-pyrrolidinone ring expansion process to generate a key dihydroxylated pyrrolidine intermediate, which contains the three contiguous stereogenic centers of the target with the correct absolute configurations.

2. Results and discussion

Our strategy to prepare (+)-lentiginosine ${\bf 1}$ is based on the retrosynthetic analysis illustrated in Scheme 1. We envisioned that the indolizidine ring in the target compound could be formed from 2-butenylpyrrolidine derivative ${\bf 2}$ via hydrogenolysis and subsequent cyclization. In addition, we believed that a regioselective aziridine ring opening/lactam ring formation sequence starting with diol ${\bf 4}$ would serve as an efficient method to generate the functionalized pyrrolidine ${\bf 3}$, a precursor of ${\bf 2}$. Finally, we reasoned that the *anti*-diol array in ${\bf 4}$ could be readily installed in a highly diastereoselective manner via Sharpless asymmetric dihydroxylation of the (E)-3-(aziridin-2-yl)acrylate ${\bf 5}$, a substance directly produced from chiral aziridine ${\bf 6}$.

The preparation of (+)-lentiginosine 1 started with a two-step synthesis of (*E*)-3-(aziridin-2-yl)acrylate 5 in 72% yield by using previously described procedures (Scheme 2). 19 Although we

developed various conditions for carrying out dihydroxylation reactions for aziridine-enoate type substrates in an earlier effort, ¹⁹ a brief exploratory study was conducted to uncover an ideal method for the conversion of (*E*)-3-(aziridin-2-yl)acrylate **5** into diol **4**.

Dihydroxylation of **5** employing conditions described by Donohoe et al. $(OsO_4/TMEDA\ complex)^{20}$ did not yield the desired product. In addition, catalytic dihydroxylation using $OsO_4/TMEDA$ in the absence of a chiral ligand resulted in formation of a mixture of diols **4a** and **4b** with a low level (3:2) of diastereoselectivity. Both of these outcomes are consistent with previously reported observations. Sharpless asymmetric dihydroxylation of **5** using ADmix- α generated the desired diol **4a** with high diastereoselectivity (**4a**/**4b** = 11:1), and which was isolated in 63% yield using silica gel column chromatography (Table 1).

The C-3 bond of the aziridine ring in diol **4a** was cleaved regioselectively by using excess AcOH in CH₂Cl₂ (Scheme 3).²² This process furnished a ring opened amine product that subsequently underwent efficient (72%) lactam forming cyclization²³ in toluene at 90 °C to produce pyrrolidinone **8**. It is important to note that this ring expansion strategy should be applicable to the synthesis of various polyhydroxylated pyrrolidine alkaloids.²⁴

Protection of the alcohol groups in **8** using TBSOTf afforded the bis-TBS-ether **9** (91%). Since the simultaneous reduction of both the acetate and amide groups in **9** using BH₃SMe₂ resulted in a low yield of **3** (62%), an alternate route was employed. Accordingly, hydrolysis of the acetate group with KOH followed by in situ reduction of the amide group using BH₃SMe₂ furnished the corresponding hydroxypyrrolidine **3** in high yield (81% over two steps). Following the strategy proposed for the synthesis of (+)-lentiginosine that is outlined retrosynthetically in Scheme 1, the primary alcohol group in **3** was oxidized using Swern conditions to yield the corresponding aldehyde, which in a crude form was subjected to a Wittig 3-carbon homologation process using the benzyloxy-propylphosphonium salt **12**. This reaction produced *cis*-olefin **2** as a single isomer in high yield (66% over two steps, 2 g scale).

Cleavage of the *N*-phenylethyl group and reduction of the olefin moiety in **2** were readily accomplished by utilizing catalytic hydrogenation with $Pd(OH)_2$ in methanol at room temperature containing a catalytic amount of TFA. This process produced amino alcohol **10** in 88% yield as a mixture of a free base and a TFA salt. Neutralization with triethylamine then gave the free base form of **10**. After purification by using silica gel column chromatography, compound **10** was treated sequentially with CBr_4/PPh_3 and triethylamine to promote piperidine ring formation, a process that generated indolizidine **11**²⁵ in 74% yield. Finally, removal of the TBS protecting groups under acidic conditions (3 M HCl) furnished (+)-lentiginosine **1** in 86% yield. The identity of synthetic (+)-lentiginosine **1** was confirmed by showing that its spectroscopic and optical properties { 1H and ${}^{13}C$ NMR, and specific rotation: $[\alpha]_D^{19.8} = +2.2$

Scheme 1. Retrosynthetic analysis of (+)-lentiginosine 1.

Download English Version:

https://daneshyari.com/en/article/1347353

Download Persian Version:

https://daneshyari.com/article/1347353

Daneshyari.com