

Tetrahedron: Asymmetry 16 (2005) 3795-3801

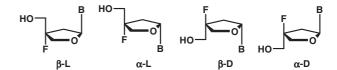
Tetrahedron: Asymmetry

Asymmetric synthesis of 2',3'-dideoxy-3'-fluoroapiofuranosyl nucleosides

Byeong-Seon Jeong,[†] Jae Wook Lee, Hoe Joo Son, Bok Young Kim and Soon Kil Ahn*

New Drug Research Laboratories, Chong Kun Dang Research Institute, Cheonan 330-831, Republic of Korea

Received 12 August 2005; accepted 1 September 2005


Abstract—An efficient stereoselective synthetic method for each stereoisomer of enantiomerically pure 2',3'-dideoxy-3'-fluoroapio-furanosyl nucleosides was developed. The key features of this strategy are the enantiospecific fluorination of the *tert*-alcohol and the orthogonal protection/deprotection of the diol.

© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that fluorine substituted compounds show remarkable differences in biological activities and pharmacological properties compared to their parent molecules. The development of a preparative method for enantiomerically pure fluorine-containing compounds has been of great interest in medicinal and organic chemistry. Despite there being many examples for the asymmetric synthesis of fluoro-compounds, there is still a need to develop more efficient synthetic methods for enantiomerically pure fluorine containing compounds.²

We have reported the synthesis of the racemic 1-(2,3-dideoxy-3-fluoroapiofuranosyl)cytosine and determination of its relative configuration by NMR and X-ray crystallography.³ A short time later, Chu et al. accomplished the synthesis of the enantiomerically enriched (–)-1-(2,3-dideoxy-3-fluoroapio-β-L-furanosyl)cytosine 11a in 90% ee where the 1,3-chirality transfer using a Claisen rearrangement was employed as the key step.⁴ They also reported the determination of the absolute configuration of 11a by NMR and X-ray crystallographic studies.⁴ An application of this synthetic strategy to the enantiomeric synthesis of the D-isomers 15a and 15b has recently been reported by Kim and Hong.⁵

Figure 1. Stereoisomers of 1-(2,3-dideoxy-3-fluoroapiofuranosyl)-nucleosides.

Over the course of the asymmetric synthesis of enantiomerically pure fluoroapiofuranosyl nucleosides shown in Figure 1, we needed to prepare the enantiomerically pure tertiary fluoride 5 from the chiral tertiary alcohol 4 (Scheme 1). Amongst the many reports on the preparation of fluoro compounds by treatment of alcohols with diethylaminosulfur trifluoride (DAST), we found only a few examples on the conversion of a tertiary alcohol to a tertiary fluoride with DAST.⁶ Herein, we report an efficient method for the asymmetric synthesis of each stereoisomer of enantiomerically pure 2',3'-dideoxy-3'-fluoroapio-β/α-L/D-furanosyl nucleosides, shown in Figure 1, through an unprecedented enantiospecific conversion of chiral tertiary alcohol to the corresponding fluoride with inversion of stereochemistry using DAST as a key step.

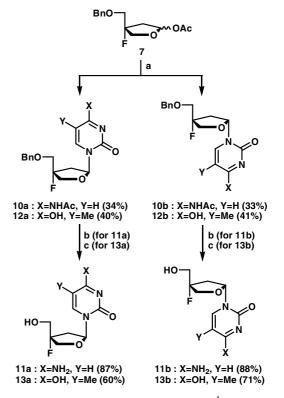
2. Results and discussion

The asymmetric synthesis of the key intermediates, L- and D-2,3-dideoxy-3-fluoroapiofuranoses 7 and 9, is described in Scheme 1. Our synthesis commenced with commercially available α -D-lactose 1, which was

^{*}Corresponding author. Tel.: +82 41 529 3107; fax: +82 41 558 3004; e-mail: skahn@ckdpharm.com

[†]Present address: Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.

Scheme 1. Reagents and conditions: (a) Me₂C(OMe)₂, *p*-TsOH, Me₂CO, rt, 2 h, 90%; (b) TsCl, pyridine, CHCl₃, rt, 10 h, 84%; (c) NaI, 2-butanone, reflux, 12 h, 85%; (d) Zn, AcOH, THF–H₂O (30:1), 40 °C, 1 h, 72%; (e) LAH, THF, reflux, 6 h, 80%; (f) NaH, Bu₄NI, PhCH₂Br, THF, rt, 12 h, 80%; (g) HCl, MeOH, rt, 20 h, 82%; (h) (PhCO)₂O, Et₃N, DMAP, CH₂Cl₂, rt, 2 h, 99%; (i) Et₂NSF₃, CH₂Cl₂, -78 to 0 °C, 0.5 h, 81%; (j) NaOMe, MeOH, rt, 1 h, 97%; (k) BCl₃, CH₂Cl₂, -78 °C, 1 h, 77%; (l) O₃, EtOAc, -78 °C, 2 h; (m) Ac₂O, Et₃N, DMAP, CH₂Cl₂, rt, 1 h, 78% for **7** (for two steps) and 74% for **9** (for two steps), respectively.


transformed to α-D-isosaccharino-1,4-lactone **2** by the known procedure.⁷ Preparation of the enantiomerically pure diol **3** was accomplished from **2** in seven steps developed by Monneret et al.⁸ The primary hydroxyl group of **3** was selectively benzoylated with benzoic anhydride and DMAP to give **4** quantitatively.

With the enantiomerically pure tertiary alcohol **4** in hand, we tried the fluorination of the tertiary hydroxyl group in **4** with DAST at -78 °C. It was found that the conversion of the hydroxyl to the corresponding fluoride **5** with complete inversion of stereochemistry was achieved in 81% yield. The absolute configuration of **5** was confirmed by the comparison of specific rotations of **11a** { $[\alpha]_D^{20} = -44.4 \ (c \ 0.18, MeOH)$ } and **11b** { $[\alpha]_D^{20} = +84.1 \ (c \ 0.37, MeOH)$ } with the literature data reported by the Chu group {**11a**: $[\alpha]_D^{27} = -40.7 \ (c \ 0.70, MeOH),$ **11b** $: <math>[\alpha]_D^{27} = +74.5 \ (c \ 0.41, MeOH)$ }. ^{4,9} The enantiopurity of **5** was confirmed by the determination of the enantiomeric excesses of the final nucleosides, **11a** (β-L), **11b** (α-L), **15a** (β-D), and **15b** (α-D), by chiral HPLC analysis. All compounds showed >99% enantiomeric excesses. ¹⁰ All these results consistently demonstrate the complete inversion of stereochemistry in the

fluorination step $(4\rightarrow 5)$. To the best of our knowledge, this is the first example of an enantiospecific inversion of a tertiary alcohol to a tertiary fluoride with DAST in an acyclic system.

The advantage of our synthesis lies in the versatility of the orthogonally protected fluorodiol 5. Depending on the deprotection method of the two protective groups (benzyl vs benzoyl) of the diol in 5, either the L- or D-form of the apiofuranosyl acetates, 7 or 9, was selectively obtained. For the preparation of the L-isomer, NaOMe treatment to 5 in methanol gave the mono-benzylated alcohol 6. Ozonolysis of the double bond in 6, followed by reductive treatment gave the lactol, which was acetylated to afford the L-fluoroapiofuranosyl acetate 7. On the other hand, treatment of 5 with BCl₃ in CH_2Cl_2 afforded the *mono*-benzoylated alcohol 8, which was treated with the same method mentioned above to give the D-fluoroapiofuranosyl acetate 9.

Syntheses of enantiomerically pure 1-(2,3-dideoxy-3-fluoroapio-L-furanosyl)pyrimidine nucleosides are depicted in Scheme 2. Coupling of L-apiosyl acetate 7 with silylated N^4 -acetylcytosine or thymine under Vorbrüggen reaction conditions gave a 1:1 mixture of β - and α -isomers, which were readily separated by column chromatography. The protecting groups in 10 and 12 were removed to afford enantiomerically pure L-nucleosides 11 and 13, respectively. In a similar manner, D-isomers were prepared from D-apiosyl acetate 9

Scheme 2. Reagents and conditions: (a) silylated N^4 -acetylcytosine or silylated thymine, TMSOTf, CH₂Cl₂, 0 °C, 0.5 h; (b) (i) BCl₃, CH₂Cl₂, -78 °C, 1 h, (ii) NaOMe, MeOH, rt, 1 h; (c) BCl₃, CH₂Cl₂, -78 °C, 2 h.

Download English Version:

https://daneshyari.com/en/article/1349140

Download Persian Version:

 $\underline{https://daneshyari.com/article/1349140}$

Daneshyari.com