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a b s t r a c t

Ligand-based and structure-based methods were applied in combination to exploit the physicochemical
properties of 2,3-dideoxy hex-2-enopyranosid-4-uloses against Mycobacterium tuberculosis H37Rv. Statis-
tically valid 3D-QSAR models with good correlation and predictive power were obtained with CoMFA
steric and electrostatic fields (r2 = 0.797, q2 = 0.589) and CoMSIA with combined steric, electrostatic,
hydrophobic and hydrogen bond acceptor fields (r2 = 0.867, q2 = 0.570) based on training set of 33 mole-
cules with predictive r2 of 0.808 and 0.890 for CoMFA and CoMSIA respectively. The results illustrate the
requirement of optimal alkyl chain length at C-1 position and acceptor groups along hydroxy methyl sub-
stituent of C-6 to enhance the anti-tubercular activity of the 2,3-dideoxy hex-2-enopyranosid-4-uloses
while any substitution at C-3 position exert diminishing effect on anti-tubercular activity of these enu-
losides. Further, homology modeling of M. tuberculosis alpha-mannosidase followed by molecular docking
and molecular dynamics simulations on co-complexed models were performed to gain insight into the
rationale for binding affinity of selected inhibitors with the target of interest. The comprehensive infor-
mation obtained from this study will help to better understand the structural basis of biological activity
of this class of molecules and guide further design of more potent analogues as anti-tubercular agents.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Today tuberculosis (TB) continues to be one of the leading
causes of death globally, from a single infectious agent [1–3]. The
recent emergence of multi-drug resistant TB (MDR-TB), extensively
drug resistant TB (XDR-TB) and co-infection with HIV have ren-
dered the existing chemotherapeutic approaches progressively
ineffective [4] raising fears that TB may become uncontrollable
[5]. This has prompted a new sense of urgency toward the search
of novel chemical entities as anti-TB molecules having potent
activity, reduced toxicity, rapid mycobactericidal action, shortened
duration of therapy and new site of action to minimize the chances
of drug resistance [6,7]. In recent decades there has been a
renewed interest in the use of carbohydrates scaffolds in drug

discovery due to their unique properties [8]. However, a major
impediment in the development of carbohydrate molecules as
therapeutics has been their rapid degradation in the body by gly-
cosidases. One way to overcome this pharmacokinetic difficulty
is to use modified sugars which may not be recognized by the reg-
ular complement of glycosidases present in the body [9,10]. In this
milieu, we recently reported the design and synthesis of 2,3-
dideoxy hex-2-enopyranosid-4-uloses which are small, modified
sugar molecules as promising anti-tubercular agents [11].

1.1. Ligand-based molecular modeling

Quantitative structure activity relationship (QSAR) can offer
some valuable suggestions to improve the drug activity on the
basis of QSAR analyses fitted to the activity data of training set of
molecules aligned in three dimensional spaces [12–15]. Therefore,
ligand based 3D-QSAR models were built using Comparative Mole-
cular Field Analysis (CoMFA) [16] and Comparative Molecular
Similarity Indices Analysis (CoMSIA) [17] to understand the key
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structural elements capable to produce more effective inhibitors.
Moreover, training set used to develop the predictive QSAR model
is supposed to encompass diverse chemical entities as much as
possible to train highly predictive models [18]. According to Mag-
giora and Johnson similarity–property principle [19], chemical
similarity among molecules can be related to the biological activ-
ity. This correlation is mostly dependent on the method of similar-
ity measures used in the study and varies between different
methods which are classified according to the information used
to calculate the similarity between two structures [20,21]. Struc-
tural or topological fingerprints, like [22] are simple and rapid
methods to encode the information in the form of fingerprints
based on features that are included in the structures. These finger-
prints can be used to measure the degree of dissimilarity between
all pairs of molecules to build a diversified training set. Therefore,
to rationalize the selection method in the current study, training
set of 33 molecules and test set of 5 molecules were selected from
clusters built from hierarchical clustering using pvclust [23] R
package to ensure the molecular diversity in both the training
and test sets. 2D descriptors [22] were utilized in calculating dis-
similarity matrix to cluster the whole dataset.

1.2. Structure-based molecular modeling

On the other hand, structure-based drug design depends entire-
ly on information obtained from three dimensional structures of
the biological targets of interest. The proper analyses of spatial
arrangements of ligands present in the protein’s active site can
offer valuable rationale for activity profile of structural analogs in
terms of favorable and unfavorable intermolecular interactions.
We obtained the inhibition activity of three inhibitors from the
present dataset against the alpha-mannosidase enzyme where
one of the compounds corresponds to the most active anti-tuber-
cular among other compounds in this dataset.[24] In the absence
of X-ray crystallographic structure of the protein, homology mod-
eling was attempted to generate three-dimensional coordinates of
the target protein Mycobacterium tuberculosis alpha-mannosidase.
Cloning and expression studies of Rv0648 gene have demonstrated
in previous studies that activity of alpha-mannosidase is important
for biosynthesis of mannosylated glycoconjugates in M. tuberculo-
sis [25]. Sequence annotation shows that alpha mannosidase
enzymes belong to the family of 38 glycosyl hydrolase and catalyze
the cleavage of alpha-mannose. Due to the limited sequence simi-
larity with full protein, homology model has been generated only
for alpha-mannosidase domain. This model is further used for
docking of selected inhibitors followed by nanosecond duration
molecular dynamics simulations. Biological activities of three
selected inhibitors against M. tuberculosis alpha mannosidase were
considered in the present study to understand the molecular basis
of rationalization behind binding affinity.[24] On the basis of
ligand based QSAR analyses in conjunction with molecular docking
and molecular dynamics (MD) simulations on homology model of
alpha mannosidase co-complexed with inhibitors, key points were
highlighted which can act as guidelines for design of new
inhibitors against M. tuberculosis alpha-mannosidase.

2. Materials and methods

2.1. Ligand-based studies

Thirty-eight molecules from our previously reported work [11]
(Table S1) with MIC values <25 lg/mL were converted to the
corresponding pMIC (-log MIC) to be used as dependent variable
for developing the 3D-QSAR model. Correct alignment of selected
conformations of molecules is the most crucial step of development

of reliable 3D-QSAR models. Therefore, global energy minimum
conformation of most active compound 38 was obtained through
the simulated annealing where molecule was heated up to 700 K
for 1000 fs followed by annealing the molecule to 200 K for
1000 fs and, further followed by BFGS energy minimization. This
energy minimized molecule was used as the alignment template,
and the rest of the molecules were built and aligned on it subse-
quently by using the database alignment module (Fig. 1) using Tri-
pos force field [26] and Huckel partial atomic charges implemented
in [27]. Further, the dissimilarity matrix was built between all pairs
of compounds measured by tanimoto similarity coefficient
between the MACCS fingerprints calculated from rcdk package
[28]. Hierarchical clustering was done using ward’s linkage method
[29] for all the thirty-eight molecules using R 2.12.2 package avail-
able at [30] to remove subjective bias in the variable selection pro-
cedure. Approximately unbiased (AU) p-values were obtained via
multiscale bootstrap resampling for clusters using pvclust package
in R 2.12.2 for assessing the uncertainty in hierarchical cluster ana-
lysis. Three-dimensional quantitative structure–activity relation-
ships (3D-QSAR) methodologies: comparative molecular field
analysis (CoMFA) [31] and comparative molecular similarity
indices analysis (CoMSIA) [31,32] were applied with default values
of different parameters on the training set molecules divided on the
basis of clustering. Further, the predictive correlation coefficient (r2-
pred) based on the test molecules, is computed by using formula

r2
pred ¼ ðSD� PRESSÞ=SD

where SD is the sum of the squared deviations between the biologi-
cal activities of the test set and mean activities of training set mole-
cules and PRESS is the sum of squared deviation between predicted
and actual activity for every molecule in test set.

2.2. Receptor-based studies

Amino acid sequence for M. tuberculosis alpha mannosidase
(Uniprot id: P96937) was evaluated further to determine the pres-
ence of conserved domains or signature sequences using Interpro
(http://www.ebi.ac.uk/interpro/) and pfam (http://pfam.sanger.ac.
uk/) databases. The server for homology detection, HHpred [33]
which utilizes hidden markov model to search for suitable tem-
plates by profile–profile alignment methods together with predict-
ed secondary structure to produce a high quality alignment even
for distant homologs, was used for template searching. Next, a
multi-template alignment with selected templates (PDB id: 3BVX
and 3LVT) together with zinc and swainsonine co-complexed
PDB 2WYI was used by modeler 9.10 [34] to generate ten 3D coor-
dinates of the M. tuberculosis alpha-mannosidase. Top model was
selected on the basis of Dope score and checked by procheck for
presence of structural discrepancies. Low complexity regions with
no similarity with templates were deleted and rest of the portion
was considered for further studies. Zinc binding site was confirmed

Fig. 1. Database alignment of 38 molecules used in QSAR studies.
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