

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Review article

Synthesis and antiviral activity of maleopimaric and quinopimaric acids' derivatives

Elena V. Tretyakova ^{a,*}, Irina E. Smirnova ^b, Elena V. Salimova ^a, Victor N. Odinokov ^a

^a Institute of Petrochemistry and Catalysis of the Russian Academy of Sciences, 141 Prospect Oktyabrya, 450075 Ufa, Russian Federation

ARTICLE INFO

Article history: Received 15 June 2015 Revised 1 September 2015 Accepted 3 September 2015 Available online 5 September 2015

Keywords: Synthesis Diterpenes Levopimaric acid Maleopimaric acid Quinopimaric acid Antiviral activity

ABSTRACT

A series of maleopimaric and quinopimaric acids' derivatives modified in the E-ring, at the carbonyl- and carboxyl-groups were synthesized and evaluated for their activity in vitro against respiratory viruses (influenza; rhinovirus; adenovirus; and SARS), papilloma virus, and hepatitis B and C viruses. The antiviral screening of levopimaric acid diene adducts derivatives was carried out with minimal effect on SARS and influenza type B viruses. Excellent antiviral activity of the ozonolysis product of maleopimaric acid and dihydroquinopimaric methyl-(2-methoxycarbonyl)ethylene amide was found toward papilloma virus (HPV-11 strain) with the selectivity index of SI 30 and 20, respectively. Methyl (2-methoxycarbonyl)ethylene-, 1β -hydroxy-5'-kaprolaktamo- and 4β -hydroxy- 4α , 14α -epoxy-13(15)-ene-dihydroquinopimaric acid derivatives have also shown activity against replication of HCV nucleic acid and low toxicity.

© 2015 Elsevier Ltd. All rights reserved.

Contents

1.	Introduction			6544
2.	Results and discussion			6544
	2.1.	Chemi	stry	6544
	2.2.	Evalua	tion of antiviral activity	6547
3.	3. Conclusions.			6548
4.	Experimental			6548
	4.1.		als and methods	
	4.2.		stry.	
		4.2.1.	Dimethyl 15-hydroxy-18-isopropyl-4,10-dimethyltetradecahydro-8,12-ethenocyclopentalalphenanthrene-4,13	
			(1H)-dicarboxylate (dimethyl 15-hydroxy-cyclopentanonepimarate) 9	6548
		4.2.2.	Methyl 1-(2-cyanoethoxy)-13-isopropyl-7,10a-dimethyl-4-oxohexadecahydro-1 <i>H</i> -4b,12-ethenochrysene-7-carboxylate	
			(methyl 1-cyanoethyl-dihydroquinopimarate) 21	6548
		4.2.3.	Methyl 13-isopropyl-7,10a-dimethyl-1- $\{[(2E)-3-phenylprop-2-enoyl]oxy\}-4-\{[(2Z)-3-phenylprop-2-enoyl]oxy\}$	
			hexadecahydro-1 <i>H</i> -4b,12-ethenochrysene-7-carboxylate (methyl 1,4-dicynnamoyl-dihydroquinopimarate) 27	6548
		4.2.4.	13-Isopropyl-7,10a-dimethyl-7-({[(2E)-3-phenylprop-2-enoyl]oxy}methyl)hexa-decahydro-1 <i>H</i> -4b,12-ethenochrysene-1,	
			4-diyl (2E,2'Z)bis(3-phenylacrylate) (1,4,20-tricynnamoyl-dihydroquinopimarate) 28	6549
		4.2.5.	Methyl (4E)-4-(hydroxyimino)-13-isopropyl-7,10a-dimethyl-1-oxohexadecahydro-1H-4b,12-ethenochrysene-	
			7-carboxylate (methyl 4-oxime-dihydroquinopimarate) 31	6549
		4.2.6.	Methyl 1-(acetyloxy)-5-isopropyl-6b,10-dimethyloctadecahydro-5,12a-methanochryseno[1,12-bc]furan-10-carboxylate	
			(methyl 1,13-epoxy-4-acetoxy-dihydroquinopimarate) 35	6549

^b Ufa Institute of Chemistry of the Russian Academy of Science, 71 Prospect Oktyabrya, 450054 Ufa, Russian Federation

^{*} Corresponding author. Fax: +7 (347) 2842750. E-mail address: tretyakovaelv@gmail.com (E.V. Tretyakova).

4.3.	Evaluation of antiviral activity	6549
Ackno	owledgments	6549
Supple	ementary data	6549
Refere	ences and notes	6549

1. Introduction

Tricyclic diterpenoids of abietane series is one of the important groups of the secondary metabolites, which are widespread in nature.¹ Their natural and synthetic derivatives exhibit a broad spectrum of biological activities for example, antimicrobial,² antiviral,^{3,4} antimalaria,⁵ antiulcer,⁶ antileishmaniasis,⁷ antioxidant,^{8,9} and others. Abietane diterpenoids exhibited the antitumor promoting activity^{10,11} and they are inhibitors of viruses reproduction^{12,13} such as the herpes simplex virus type 1 (HSV-1),¹⁴ cytomegalovirus (CMV),¹⁵ varicella-zoster virus (VZV)¹⁵ and Epstein-Barr virus.¹⁶

Abietane acids', such as abietic and levopimaric acids', readily available from an oleoresin produced by *Pinus* or commercial disproportionate rosin and easily reacts with dienophiles giving the Diels–Alder adducts in high yields. ^{17–19} Diterpene derivatives obtained by the diene synthesis and their synthetic derivatives have diverse pharmacological activity, including anti-inflammatory, ^{20–22} antiulcer, ²³ anticancer ²⁴ and antitumor. ²⁵ Despite the variety of biological properties of this compounds family, there are few data on the antiviral activity study of their derivatives. So, for dihydroquinopimaric acid amides ²⁶ and some frame derivatives of quinopimaric acid ²⁷ was set a moderately antiviral activity against influenza A virus. Dihydroquinopimaric acid and its non-

trivial product of dimethyldioxirane oxidation proved to be effective inhibitors of papillomavirus (HPV).²⁸

The present work is an extension of our ongoing efforts toward developing promising biologically active agents among the levopimaric acid diene adducts derivatives. ^{20–24,26,28–30} We have realized the chemical transformations of levopimaric acid diene adducts with maleic anhydride and *p*-benzoquinone, resulting in more than thirty derivatives of maleopimaric and quinopimaric acids' modified in the E-ring, at the carbonyl- and carboxyl-groups were synthesized and their in vitro antiviral activity was evaluated.

2. Results and discussion

2.1. Chemistry

For the synthesis of maleopimaric acid **1**³¹ and quinopimaric acid **3**³² pine resin *Pinus silvestris* containing about 25% levopimaric acid was used. Dihydroquinopimaric acid **5**,³³ trimethyl fumaropimarate **2**,³⁴ and methyl 2,3-epoxyquinopimarate **6**,³³ as well as dimethyl cyclopentenonepimarate **7**³³ and dimethyl cyclopentanonepimarate **8**,³³ were obtained by procedures described before (Scheme 1).

The reaction of the diester **7** with sodium borohydride in refluxing methanol showed recovery not only of the carbonyl group, but

Scheme 1. Reagents and conditions: (i) maleic anhydride, 200 °C (ii) 1,4-benzoquinone, CHCl₃-CH₃CN (1:4), 7 days, rt (iii) 15% KOH/MeOH, reflux, 2 h. (iv) CH₂N₂/Et₂O, EtOH, 0 °C (v) Zn/AcOH, 100 °C (vi) 35% H₂O₂, 6 M NaOH/MeOH, Et₂O, 0 °C (vii) 10% NaOH, EtOH, rt (viii) H₂, 20% Ni/Raney, MeOH (ix) NaBH₄, MeOH, reflux.

Download English Version:

https://daneshyari.com/en/article/1357791

Download Persian Version:

https://daneshyari.com/article/1357791

<u>Daneshyari.com</u>