Bioorganic & Medicinal Chemistry 23 (2015) 290-296

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Antibacterial activity of novel benzopolycyclic amines

Marta Barniol-Xicota^a, Alex Escandell^b, Elena Valverde^a, Esther Julián^c, Eduard Torrents^{b,*}, Santiago Vázquez^{a,*}

^a Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, s/n, Barcelona E-08028, Spain

^b Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia, Baldiri Reixac 15-21, 08028 Barcelona, Spain ^c Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Facultat de Biociències, 08193, Bellaterra, Barcelona, Spain

ARTICLE INFO

Article history: Received 10 October 2014 Revised 24 November 2014 Accepted 27 November 2014 Available online 3 December 2014

Keywords: Antibacterials Minimal biofilm inhibitory concentration Polycyclic compounds Staphylococcus aureus

1. Introduction

Bacterial infection remains a serious threat to human lives because of its emerging resistance to existing antibiotics, which is an increasing public health problem. The emergence of antibiotic-resistant bacteria has increased the complexity of anti-infective therapies being administrated in hospitals becoming a major health and economic problem. Coagulase-negative staphylococci, *Staphylococcus aureus* or *Pseudomonas aeruginosa* are very often responsible for nosocomial infections. *S. aureus* is a major pathogen that causes numerous syndromes in humans and animals ranging from minor skin and wound infection to life-threatening diseases.¹ *P. aeruginosa* is a known opportunistic common pathogen that causes pneumonia, catheter-associated and urinary tract infections, and sepsis.² Thus, the development of new antibacterial agents against *S. aureus* or *P. aeruginosa*, especially strains resistant to multiple antibiotics, has become and urgent health issue.³⁻⁵

Recently, one of our groups, reported the synthesis and pharmacological evaluation of a series of novel benzopolycyclic compounds of general structures **1** and **2** with NMDA receptor antagonist activity (Fig. 1).^{6–8} While performing a random screening for antibacterial activity (Table 1), we found that primary amines **2a** and **2d** displayed reasonable activity against *S. aureus* (MIC₅₀ = 17 and

ABSTRACT

Staphylococcus aureus, especially strains resistant to multiple antibiotics, is a major pathogen for humans and animals. In this paper we have synthesized and evaluated the antibacterial activity of a new series of benzopolycyclic amines. Some of them exhibited μ M MIC values against *Staphylococcus aureus* and other bacteria, including methicillin-resistant *S. aureus* MRSA. Compound **8** that displayed a good selectivity index, showed to be active in eliminating bacterial cells forming a preexisting biofilm.

© 2014 Elsevier Ltd. All rights reserved.

Figure 1. General structures of previously known compounds 1a-i and 2a-j.

95 μ M, respectively). This result led us to perform a deeper study on the antibacterial activity of several related compounds and to evaluate their activity against several bacterial pathogens as well as in a preformed *S. aureus* biofilm in which cells are more resistant to existing antibiotics.

We have found that either electron-withdrawing or electrodonating groups in the aromatic ring were deletorius for activity, as it was the alkylation of the amino group. Interestingly, replacement of the hydrogen atom in **2a** by a chlorine atom furnished novel compound **8**, with MIC₅₀ = 36 μ M against *S. aureus* and a better selectivity index than **2a** and **2d**. Compound **8** was further screened against a broader panel of pathogens, including methicillin-resistant *S. aureus MRSA, Staphylococcus epidermis, Streptococcus mutants, Enterococcus faecalis* and *Burkholderia cenocepacea*. The compounds were inactive against *P. aeruginosa*. Interestingly compound **8** showed to be active in eliminating cells forming a preexisting *S. aureus* biofilm.

^{*} Corresponding authors. Tel.: +34 934034756 (E.T.), +34 934024533 (S.V.).

E-mail addresses: etorrents@ibecbarcelona.eu (E. Torrents), svazquez@ub.edu (S. Vázquez).

Table 1Known compounds screened for anti-bacterial activity^a

Compound	\mathbb{R}^1	R ²	R ³	MIC ₅₀	
1a	Н	Н	Н	>1000	
1b	Н	CH ₃	CH ₂ C ₆ H ₅	>1000	
1c	Н	CH ₂ C ₆ H ₅	CH ₂ C ₆ H ₅	>1000	
1d	Н	Н	CH ₂ C ₆ H ₅	>1000	
1e	Н	Н	NH ₂	>1000	
1f	Н	Н	CH ₂ CCH	>1000	
1g	CH ₃	Н	COCH ₃	>1000	
1h	CH_3	CH_3	CH ₃	>1000	
1i	CH_3	CH_2CH_3	CH ₂ CH ₃	>1000	
2a	Н	Н	Н	17	
2b	Н	CH ₃	CH ₃	304	
2c	OH	CH ₃	CH ₃	>1000	
2d	F	Н	Н	95	
2e	F	CH ₃	CH ₃	>1000	
2f	CH_3	Н	Н	>1000	
2g	CH_3	CH_3	CH ₃	>1000	
2h	CH_3	Н	$CH_2C_6H_5$	>1000	
2i	CH_3	CH ₃	$CH_2C_6H_5$	>1000	
2j	CH_3	Н	CH ₂ CONH ₂	>1000	

^a Compounds were tested against *S. aureus* and *P. aeruginosa*. None of the compounds showed activity against *P. aeruginosa*. The MIC column (μ M) refers to *S. aureus* results.

2. Results and discussion

2.1. Synthesis

The target compounds were synthesized according to Scheme 1. Key intermediate **4** was synthesized from the known enone **3**,⁹ through a Prins–Ritter transannular cyclization with chloroacetonitrile in the presence of sulfuric acid, as we have recently reported.⁸ Previously, we had synthesized fluoroamine **2d** from **4** in 44% overall yield by a two-step sequence that involved cleavage of the chloroacetyl group of **4** using thiourea,⁸ followed by substitution of the hydroxyl group by diethylaminosulfur trifluoride (DAST). Now, we have found that **2d** is also available in a much higher overall yield by first performing the DAST reaction to give fluoro derivative **5**, followed by cleavage of the chloroacetyl group with thiourea.

Reaction of **4** in neat thionyl chloride at reflux for 1 h followed by column chromatography furnished **6** in 56% yield. Cleavage of the chloroacetyl group of **6** led to amine **8** in 73% yield. Reductive alkylation of **8** with formaldehyde and NaBH₃CN in acidic media furnished the tertiary amine **11** in 34% yield.

On the other hand, nitration of the aromatic ring of **5** with fuming nitric acid led to **7** in 86% yield. Cleavage of the chloroacetyl group led to nitroamine **9** in 82% yield. Reductive alkylation of **9** as carried out in **8** furnished the tertiary amine **10** in 86% yield. Finally, catalytic hydrogenation of **9** furnished diamine **12** in quantitative yield.

The structure of all new compounds was confirmed by elemental analysis and/or HRMS, IR, ¹H NMR and ¹³C NMR.

2.2. Antibacterial activity

The antibacterial activity of the different benzopolycyclic amines compounds on planktonic cells of *P. aeruginosa* and *S. aureus* were investigated by determination of MIC₅₀ and MIC₁₀₀ values

Table 2MIC's and cytotoxicity^a

Compound	S. aureus (µM)			P. aeruginosa (µM)				
	MIC ₅₀	MIC ₁₀₀	CC ₅₀	SI	MIC ₅₀	MIC ₁₀₀	CC ₅₀	SI
2a	17	>39	58.5	3.4			58.5	
2b	304	<625	44.5	0.15	<2500	5000	44.5	
2c	<10000	>10000	>100	_			>100	
2d	95	<312						
8	36	<156	363.2	10.1	1250	>1250	363.2	
9	125	<312						
10	<425	<1250						
11	<625	<1250						
12	<375	<1250						

^a See experimental for details. MIC₅₀ for ciprofloxacin are 0.3 μ M and 1.2 μ M against *S. aureus* and *P. aeruginosa*, respectively.

Scheme 1. Synthesis of amines 2d and 8–12. Reagents and conditions: (a) DAST, DCM, -30 °C to 5 °C, 89% yield; (b) thiourea, glacial AcOH, abs ethanol, reflux, 86% for 2d, 73% for 8, 82% for 9; (c) thionyl chloride neat, reflux, 1 h, 56% yield; (d) fuming HNO₃, Ac₂O, AcOH, 0 °C to rt, overnight, 86%; (e) formaldehyde, NaBH₃CN, glacial AcOH, methanol, rt, 34% for 11; 86% for 10; (f) H₂, 10% Pd/C, methanol, 1 atm, rt, 24 h, quantitative yield.

Download English Version:

https://daneshyari.com/en/article/1358445

Download Persian Version:

https://daneshyari.com/article/1358445

Daneshyari.com