
Bioorganic & Medicinal Chemistry 19 (2011) 2114-2124

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Synthesis and antiviral activity of N^9 -[3-fluoro-2-(phosphonomethoxy)propyl] analogues derived from N^6 -substituted adenines and 2,6-diaminopurines

Ondřej Baszczyňski^a, Petr Jansa^a, Martin Dračínský^a, Blanka Klepetářová^a, Antonín Holý^a, Ivan Votruba^a, Erik de Clercq^b, Jan Balzarini^b, Zlatko Janeba^{a,*}

^a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, 16610 Prague 6, Czech Republic ^b Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven B-3000, Belgium

ARTICLE INFO

Article history: Received 3 December 2010 Revised 23 February 2011 Accepted 28 February 2011 Available online 4 March 2011

Keywords: Acyclic nucleoside phosphonates Purines FPMP Antiviral N⁶-Methyl-AMP aminohydrolase

ABSTRACT

An efficient method for the synthesis of N^9 -[3-fluoro-2-(phosphonomethoxy)propyl] (FPMP) derivatives of purine bases has been developed. Both (R)- and (S)-enantiomers of the N^6 -substituted FPMP derivatives of adenine and 2,6-diaminopurine were prepared and their anti-human immunodeficiency virus (HIV) and anti-Moloney murine sarcoma virus (MSV) activity was evaluated. Whereas none of the 6substituted FPMPA derivatives showed any antiviral activity, several FPMPDAP derivatives had a moderate antiretroviral activity. Moreover, the data obtained from the study of the substrate activity of the active derivatives towards N^6 -methyl-AMP aminohydrolase support the notion that the studied N^6 substituted FPMPDAP derivatives act as prodrugs of the antiretroviral FPMPG analogues.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Acyclic nucleoside phosphonates (ANPs) are nucleotide analogs with phosphorous atom attached to the side aliphatic chain through a stable P–C bond.¹ ANPs exhibit various antiviral,² cytostatic,³ antiparasitic,⁴ and immunomodulatory properties.⁵ Three ANPs (cidofovir, adefovir, tenofovir) are active components of potent antivirals used in human medicine for treatment of hepatitis B, AIDS, and other diseases caused by DNA viruses.⁶

An interesting subclass of ANPs is represented by the purine N^9 -[3-fluoro-2-(phosphonomethoxy)propyl] (FPMP) derivatives **1** (Fig. 1).^{2,7} In contrast to the purine N^9 -[3-hydroxy-2-(phosphonylmethoxy)propyl] (HPMP) derivatives **2** (Fig. 1), which are active against a broad spectrum of DNA viruses,¹ the FPMP compounds **1** exhibit potent and selective activity against retroviruses (HIV-1 and HIV-2).^{7,8} Thus, replacement of the hydroxyl group at the C'-3 position of an aliphatic chain by fluorine leads to a completely different pattern of antiviral activity where the loss of activity against DNA viruses is compensated by high and selective antiretroviral activity. In addition, (*S*)-FPMPA also showed interesting activity (EC₅₀: 1.2 μ M) against hepatitis B virus (HBV).⁹

Moreover, fluorinated nucleoside analogs also drew attention from the pharmaceutical industry due to improved pharmacokinetic properties (absorption, distribution, metabolism, and excretion) and diminished side effects (toxicity).¹⁰

In analogy with the other ANPs, the virus-inhibitory activity of the FPMP analogs is based on their intracellular phosphorylation to give their diphosphates, which subsequently act as terminators of the growing DNA chain.^{7,11} In regard of the biological properties of the fluorinated ANPs, main attention was aimed at the derivatives containing adenine, guanine, and 2,6-diaminopurine moieties (Table 1).¹² The anti-HIV effects of both the (*R*) and (*S*) enantiomers of the corresponding guanine (FPMPG) and diaminopurine (FPMP-DAP) derivatives are comparable, whereas the activity of the adenine analogue (FPMPA) is strictly enantiospecific.¹² (*S*)-FPMPA is 30-fold more effective an inhibitor of HIV-1 and HIV-2 replication than its (*R*) counterpart and the difference in the antiviral activity of the enantiomers in the adenine series is probably caused by preferential phosphorylation of (*S*)-FPMPA by cellular AMP kinases.^{12,13}

In order to improve the antiviral properties of the FPMP derivatives we have decided to perform structure–activity relationship (SAR) study focused on the enantiomeric N^6 -substituted FPMP derivatives of adenine and 2,6-diaminopurine represented by the general structure **3** (Fig. 1). Our reasoning was based on the fact that N^6 -substitution can considerably increase the antiviral and cytostatic activity¹⁴ of ANPs or enhance their immunostimulatory and immunomodulatory activity.^{5e} It has been found that the N^6 -substituted 2,6-diaminopurine analogues are metabolized to

^{*} Corresponding author. Tel.: +420 220183143; fax: +420 220183560. *E-mail address:* janeba@uochb.cas.cz (Z. Janeba).

^{0968-0896/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2011.02.050

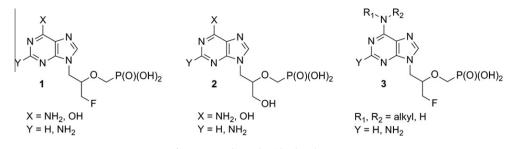


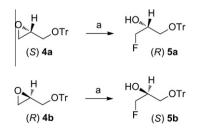
Figure 1. Acyclic nucleoside phosphonates.

Table 1 Anti-HIV-1 activity [EC₅₀ (μ M)] of purine FPMP analogues in MT-4 cells¹²

Compound	EC_{50}^{a} (μM)	CC_{50}^{b} (μ M)
(R)-FPMPA	272 ± 23.0	>300
(S)-FPMPA	8.9 ± 0.03	>300
(R)-FPMPG	5.9 ± 1.2	>300
(S)-FPMPG	3.9 ± 1.1	103 ± 90
(R)-FPMPDAP	4.3 ± 0.9	>300
(S)-FPMPDAP	15.0 ± 9.0	>300

^a Compound concentration required to inhibit HIV-induced cytopathicity in MT-4 cells by 50%.

^b Compound concentration required to reduce MT-4 cell viability by 50%.


the corresponding guanine counterparts by N^6 -methyl-AMP aminohydrolase and thus can be considered as prodrugs.¹⁵

From a chemical viewpoint, an improved synthetic strategy for the convenient preparation of the purine FPMP analogues has been developed since the original approach was quite laborious and rather expensive.^{8b}

2. Results and discussion

2.1. Chemistry

Enantiomeric 3-fluoro-1,2-propanediols¹⁶ were used in the original synthesis of the FPMP derivatives.^{8b} In the present work, commercially available enantiomeric O-tritylated glycidols **4a** and **4b** were selected as a convenient starting material (Scheme 1). Glycidols **4** were converted regioselectively and in high yields to the corresponding fluorohydrines **5** by the treatment with potassium hydrogentrifluoride¹⁷ under solid–liquid PTC (phase transfer catalysis) conditions.¹⁸ Although the stereocenter at the C-2 position of glycidols **4** is not attacked during the reaction,¹⁸ the formal configuration of fluorohydrines **5** is changed to the opposite one (Scheme 1). This fact was confirmed by the X-ray structure of fluorohydrine **5a** (Fig. 2). The data from X-ray crystal-lography analysis also showed that intramolecular O–H···O hydrogen bonds of the C-2 hydroxyl group play a dominant role in the crystal packing of the compound **5a** (Fig. 3).

Scheme 1. Synthesis of the fluorohydrines 5a and 5b. Reagents and conditions: (a) $KHF_2,$ PhCl, cat. $Bu_4NH_2F_3,$ 135 $^\circ C.$

Alkylation of the fluorohydrines **5** with diisopropyl *O*-(*p*-toluensulphonyloxy)methylphosphonate¹⁹ (**6**) with excess of NaH in DMF under standard conditions afforded phosphonates **8** in good yields (Scheme 2). Enantiomer **8a** was also obtained in the same yield (67%) by an alternative procedure using bromomethylphosphonate **7** instead of tosylate **6** under similar reaction conditions.²⁰

Detritylation of compounds **8** was carried out in 80% aqueous acetic acid and gave acceptable yields of the derivatives **9**.

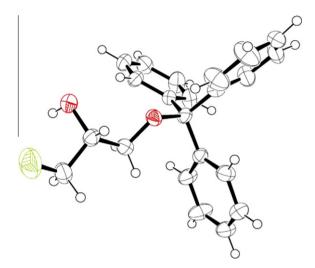


Figure 2. X-ray structure of fluorohydrine 5a.

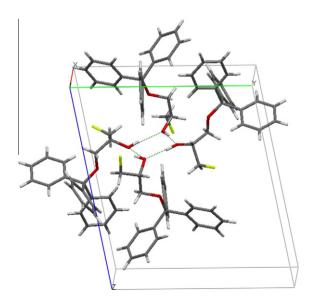


Figure 3. Crystal packing of fluorohydrine 5a.

Download English Version:

https://daneshyari.com/en/article/1358941

Download Persian Version:

https://daneshyari.com/article/1358941

Daneshyari.com