

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Design and synthesis of novel 5-(3,4,5-trimethoxybenzoyl)-4aminopyrimidine derivatives as potent and selective phosphodiesterase 5 inhibitors: Scaffold hopping using a pseudo-ring by intramolecular hydrogen bond formation

Toshiaki Sakamoto^a, Yuichi Koga^a, Masataka Hikota^a, Kenji Matsuki^a, Michino Murakami^b, Kohei Kikkawa^b, Kotomi Fujishige^c, Jun Kotera^c, Kenji Omori^{c,d}, Hiroshi Morimoto^{a,*}, Koichiro Yamada^a

^a Medicinal Chemistry Research Laboratories II, Mitsubishi Tanabe Pharma Corporation, 2-2-50 Kawagishi, Toda, Saitama 335-8505, Japan

^b Pharmacology Research Laboratories II, Mitsubishi Tanabe Pharma Corporation, 2-2-50 Kawagishi, Toda, Saitama 335-8505, Japan

^c Advanced Medical Research Laboratories, Mitsubishi Tanabe Pharma Corporation, 2-2-50 Kawagishi, Toda, Saitama 335-8505, Japan

^d Industry and Academia Cooperation Research Project, Laboratory of Target and Drug Discovery, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

ARTICLE INFO

Article history: Received 27 August 2014 Revised 23 September 2014 Accepted 27 September 2014 Available online 2 October 2014

Keywords: PDE5 PDE6 Erectile dysfunction Pseudo-ring Intramolecular hydrogen bond

ABSTRACT

5-(3,4,5-Trimethoxybenzoyl)-4-amimopyrimidine derivatives were found as a novel chemical class of potent and highly selective phosphodiesterase 5 inhibitors. A pseudo-ring formed by an intramolecular hydrogen bond constrained the conformation of 3-chloro-4-methoxybenzylamino and 3,4,5-trimethoxybenzoyl substituents and led to the discovery of T-6932 (**19a**) with a potent PDE5 inhibitory activity ($IC_{50} = 0.13 \text{ nM}$) and a high selectivity over PDE6 (IC_{50} ratio: PDE6/PDE5 = 2400). Further modification at the 2-position of T-6932 resulted in the finding of **26**, which exhibited potent relaxant effects on isolated rabbit corpus cavernosum ($EC_{30} = 11 \text{ nM}$) with a high PDE5 selectivity over PDE6 (IC_{50} ratio: PDE6/PDE5 = 2800).

© 2014 Elsevier Ltd. All rights reserved.

In human corpus cavernosum, phosphodiesterase 5 (PDE5) is the primary enzyme to hydrolyze cyclic guanosine monophosphate (cGMP). Inhibition of this enzyme elevates intracellular cGMP level and evoked relaxation of corpus cavernosum.¹ Therefore, orally available PDE5 inhibitors are used for the treatment of male erectile dysfunction as first-line therapy.^{2,3} In the USA, sildenafil (1), vardenafil, and tadalafil were approved by the FDA in 1998, 2003, and 2003, respectively.^{4–6} In addition to these marketed drugs, PDE5 inhibitors having various frameworks, such as phthaladine,⁷ quinazoline,⁸ quinolone,⁹ pyrazolopyrimidine,¹⁰ pyridopyrazinone,¹¹ and pyrimidine-4(3H)-one¹² have been reported to date.

Ukita et al. have reported the isoquinolinone derivatives (**2**, T-1032) as a prototype PDE5 inhibitor (Fig. 1).¹³ Although T-1032 exhibited potent PDE5 inhibitory activity ($IC_{50} = 1.0 \text{ nM}$), the selectivity over PDE6 was insufficient (32-fold against trypsin-activated bovine retina PDE6 and 650-fold against light-activated bovine

retina PDE6).^{14,15} These values were almost equivalent to those of sildenafil which has been reported to cause visual disturbance resulting from PDE6 inhibition in some cases.^{16,17} In addition to this, T-1032 showed severe toxicity in dogs; therefore, further evaluation was terminated.

To improve selectivity against PDE6, we started synthetic studies in the search of a novel series of PDE5 inhibitors using T-1032 as a lead compound. First, we investigated whether the carbonyl group of T-1032 plays a crucial role for inhibition of PDE5 and PDE6, since bicyclic rings having a carbonyl group were common frameworks among T-1032, sildenafil, and cGMP. For this purpose, isoquinoline derivatives **B** were designed by deletion of the carbonyl group at the 1-position of the isoquinolinone ring and subsequent introduction of substituents at the 1-position (Fig. 2). Furthermore, the bicyclic framework of **B** was modified aiming to obtain a new chemical class of PDE5 inhibitors with reduced lipophilicity and molecular weight. As shown in Figure 2, a monocyclic series **C** was designed by opening the nitrogen-containing ring of the isoquinoline scaffold. These efforts led to the finding of 5-(3,4,5-trimethoxybenzoyl)-4-amimopyrimidine derivatives as

^{*} Corresponding author. Tel.: +81 045 963 7164; fax: +81 045 963 7165. E-mail address: morimoto.hiroshi@md.mt-pharma.co.jp (H. Morimoto).

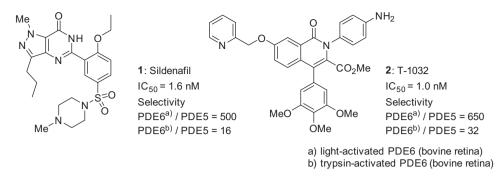


Figure 1. PDE5 inhibitory activity and selectivity against PDE6 of sildenafil (1) and T-1032 (2).

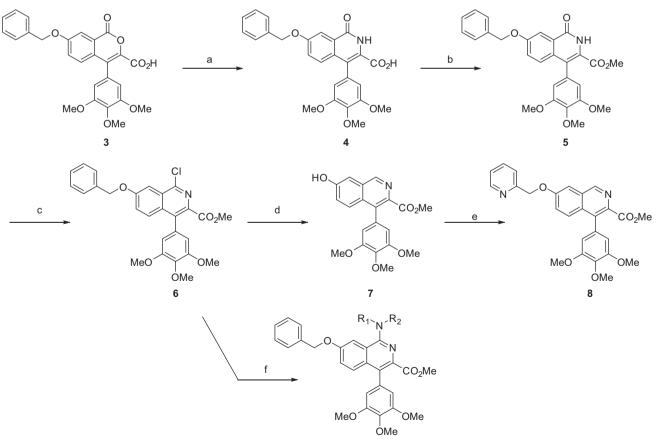



Figure 2. Transformation of bicyclic leads into monocyclic compounds.

9a, b

Scheme 1. Reagents and conditions: (a) NH₃-MeOH, rt (84%); (b) SOCl₂, MeOH, reflux (75%); (c) POCl₃, reflux (quant.); (d) Pd-C, H₂, Et₃N, EtOH, rt; (e) 2-chloromethylpyridine, K₂CO₃, DMF, 50 °C (53% from 6); (f) R¹R²NH, CuO, pyridine, 100 °C (9a 22%) or R¹R²NH, *i*-PrOH, reflux (9b 50%).

Download English Version:

https://daneshyari.com/en/article/1359358

Download Persian Version:

https://daneshyari.com/article/1359358

Daneshyari.com