Contents lists available at ScienceDirect



**Bioorganic & Medicinal Chemistry Letters** 

journal homepage: www.elsevier.com/locate/bmcl

## Synthesis and immunostimulatory properties of the phosphorothioate analogues of cdiGMP

Hongbin Yan<sup>a,\*</sup>, Xiaolu Wang<sup>a</sup>, Rhonda KuoLee<sup>b</sup>, Wangxue Chen<sup>b</sup>

<sup>a</sup> Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, Ont., Canada L2S 3A1 <sup>b</sup> Institute for Biological Sciences, National Research Council Canada, Ottawa, Ont., Canada K1A 0R6

## ARTICLE INFO

Article history: Received 24 July 2008 Revised 23 August 2008 Accepted 26 August 2008 Available online 29 August 2008

Keywords: cdiGMP Vaccine adjuvant Immunostimulation Phosphorothioate

## ABSTRACT

The synthesis of mono- and bisphosphorothioate analogues of 3',5'-cyclic diguanylic acid (cdiGMP) via the modified H-phosphonate chemistry is reported. The immunostimulatory properties of these analogues were compared with those of cdiGMP.

© 2008 Elsevier Ltd. All rights reserved.

3',5'-Cyclic diguanylic acid (cdiGMP, **1c**) has recently been recognized as an important bacterial second messenger.<sup>1-3</sup> It has also been shown to possess extraordinary immunostimulatory properties and is therefore evaluated as a potential vaccine adjuvant candidate.<sup>4-7</sup>

We previously reported a convenient synthesis of cdiGMP.<sup>8</sup> In order to explore the structure–immunostimulation relationship of cdiGMP, we synthesized the phosphorothioate analogues of cdiGMP (Fig. 1), where either one (cdiGMP-S1 **1a**)<sup>9</sup> or two (cdiGMP-S2 **1b**) sulfur atoms replace the non-bridging oxygen at the internucleotide linkages.

The 2'- and 5'-hydroxyls of guanosine were protected with the 1-(4-chlorophenyl)-4-ethoxypiperidin-4-yl (Cpep)<sup>10</sup> and the 9-phenyl-xanthen-9-yl (or the pixyl)<sup>11,12</sup> groups, respectively (Fig. 2). Guanine was 'doubly'-protected at both *O*-6 and *N*-2, as is shown in Figure 2. The modified H-phosphonate approach<sup>13,14</sup> was used due to its flexibility in the preparation of both phosphates and phosphorothioates.

The synthesis of the phosphorothioates via the modified H-phosphonate approach is illustrated in Scheme 1. In situ treatment of H-phosphonate diesters with a sulfur-transfer reagent *S*-(2-cya-noethyl)phthalimide **9** gave phosphorothioate triester **4**, which was further transformed into linear dimer H-phosphonate **6**. Cyclization of this linear dimer H-phosphonate **6** took place under high dilution conditions to furnish the fully protected cyclic dinucleotide phosphorothioate trieters **7a** and **7b** in good yields (75–80%).



Figure 1. cdiGMP 1c and its phosphorothioate analogues.

A four-step deprotection protocol (Scheme 2) was used to give the fully deprotected cdiGMP-S1 **1a** and cdiGMP-S2 **1b** in good yields (70–75%).<sup>15</sup> Removal of the *S*-(2-cyanoethyl)- group by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) under anhydrous conditions was followed by treatment with 2-nitrobenzaldoxime **12** and ammonolysis in the presence of mercaptoethanol (Scheme 2, steps i-iii). The resulting partially protected cyclic dimers **11** were then further deprotected in a triethylammonium formate buffer that contains methanol (Scheme 2, steps iv and v). The <sup>1</sup>H and <sup>31</sup>P NMR spectra of **1a** and **1b** are shown in Figure 3. Resonance at ca. 55 and –1 ppm in the <sup>31</sup>P NMR spectra correspond to phosphorothioate and phosphate, respectively. It is noted that the two sets of phosphorous signals in cdiGMP-S1 **1a** integrate equally (panel b) and that there is no signal at ca. 0 ppm in the cdiGMP-S2 **1b** (panel d).

The fully deprotected cdiGMP-S1 1a and S2 1b were also analyzed by reverse phase HPLC on a Dionex Acclaim PA C<sub>18</sub> column (Fig. 4).

We then carried out preliminary evaluation of the immunostimulatory properties of cdiGMP, cdiGMP-S1, and cdiGMP-S2. In

<sup>\*</sup> Corresponding author. Tel.: +1 905 688 5550x3545; fax: +1 905 682 9020. *E-mail address*: tyan@brocku.ca (H. Yan).

<sup>0960-894</sup>X/\$ - see front matter  $\odot$  2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2008.08.088



Figure 3. <sup>1</sup>H and <sup>31</sup>P NMR spectra of 1a (a and b) and 1b (c and d).



**Scheme 1.** Synthesis of fully protected cdiGMP-S1 and S2. (i)  $(CH_3)_3COCI$ ,  $C_5H_5N$ ; (ii) **9**,  $C_5H_5N$ ; (iii)  $NH_2NH_2$ ·H<sub>2</sub>O, CH<sub>3</sub>COOH, H<sub>2</sub>O,  $C_5H_5N$ ; (iv) **10**,  $(CH_3)_3COCI$ ,  $C_5H_5N$ , 0 °C; (v) CF<sub>3</sub>COOH, pyrrole, CH<sub>2</sub>Cl<sub>2</sub>; (vi) (PhO)<sub>2</sub>P(O)CI, CH<sub>2</sub>Cl<sub>2</sub>,  $C_5H_5N$ , -40 °C; (vii) **8** or **9**,  $C_5H_5N$ .

the first experiment, groups of five female 8-week-old C57BL/6 mice were intranasally administered with 0, 5, 10, and 69  $\mu$ g of cdiGMP in injectable phosphate buffered saline (PBS). The mice were killed 24 h later and their lungs were lavaged with PBS supplemented with 3 mM EDTA (1 ml, 5×). The total and differential cell counts as well as a panel of 21 chemokines and cytokines were measured. As can be seen in Figure 5, intranasal instillation of cdiGMP induced a dose-dependent recruitment of inflammatory cells into the bronchoalveolar spaces with the majority of recruited



**Scheme 2.** Unblocking of fully protected cdiGMP-S1 and S2. (i) DBU,  $(CH_3)_3$ SiCl, CH<sub>3</sub>CN; (ii) **12**, DBU, CH<sub>3</sub>CN; (iii) aq NH<sub>3</sub>, HSCH<sub>2</sub>CH<sub>2</sub>OH, 55 °C; (iv) CH<sub>3</sub>OH, NEt<sub>3</sub>-HCOOH buffer (pH 3.75), 40 °C, 4 h; (v) Amberlite IR-120, Na<sup>+</sup> form.

Download English Version:

https://daneshyari.com/en/article/1364796

Download Persian Version:

https://daneshyari.com/article/1364796

Daneshyari.com