

Bioorganic & Medicinal Chemistry Letters 17 (2007) 4824-4828

Bioorganic & Medicinal Chemistry Letters

Benzopyrans as selective estrogen receptor β agonists (SERBAs). Part 3: Synthesis of cyclopentanone and cyclohexanone intermediates for C-ring modification

Timothy I. Richardson,* Jeffrey A. Dodge, Gregory L. Durst, Lance A. Pfeifer, Jikesh Shah, Yong Wang, Jim D. Durbin, Venkatesh Krishnan and Bryan H. Norman

Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA

Received 17 April 2007; revised 13 June 2007; accepted 15 June 2007

Available online 20 June 2007

Abstract—Benzopyrans are selective estrogen receptor (ER) β agonists (SERBAs), which bind the ER subtypes α and β in opposite orientations. Here we describe the syntheses of cyclopentanone and cyclohexanone intermediates for SAR studies of the C-ring on the benzopyran scaffold. Modification of the C-ring disrupts binding to ER α , thus improving ER β selectivity up to 100-fold. X-ray cocrystal structures confirm previously observed binding modes. © 2007 Elsevier Ltd. All rights reserved.

The estrogen receptors are members of the steroid nuclear hormone receptor family. ERα is important for development and regulation of the female reproductive system as well as maintenance of the skeletal and cardiovascular systems. ERB was discovered in 1996 in the rat prostate gland and adds another layer of complexity to our understanding of estrogen physiology. While ERa is expressed in nearly all tissues of both sexes, ER \beta is expressed in the ovaries, uterus, and oviduct of the female reproductive tract but not in breast tissue; while in males, ERβ is expressed in the prostate and epididymis but not in the testes.² Selective ER modulators (SERMs) demonstrate tissue type functional selectivity with agonist activity in bone, liver, and cardiovascular tissues, and antagonist activity in the uterus and breast.³ This tissue type functional selectivity is most likely due to the interaction of ligand bound receptor with coactivators that combine to form gene transcription complexes or interaction with corepressors that inhibit gene transcription.

Over the last decade several groups have reported ER β selective ligands.⁴ Our own efforts focused on the benzopyran scaffold resulting in the development of benzo-

pyran 1a as a selective estrogen receptor β agonist (SERBA-1).⁵ Recently we reported structure activity relationship (SAR) studies focused on the size of the 3,4-fused ring labeled C in Figure 1.⁶ The addition of a fused cyclopentane ring at the 3,4-carbon positions of the benzopyran scaffold resulted in a dramatic increase in binding affinity, 9-fold selectivity for ER β over ER α , and provided us with a ligand architecture containing structural elements that take advantage of the space available above and below the plane marked by the two phenol rings. As can be seen in Figure 1, the cyclopropane is projected down from the plane marked

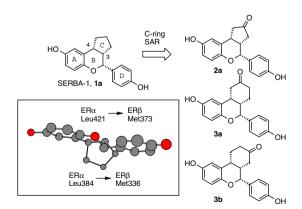


Figure 1. Unique structural features of the benzopyran platform.

Keywords: Estrogen; Estrogen receptor β ; ERb; ER β ; Selective estrogen receptor β agonist; SERBA.

^{*} Corresponding author. Tel.: +1 317 433 2372; fax: +1 317 433 0552; e-mail: t_richardson@lilly.com

by the phenol rings. This unique structural feature allowed us to take advantage of the Met-421 \rightarrow Ile-373 and the Leu-384 \rightarrow Met-336 differences between the binding pockets of ER $\alpha \rightarrow$ ER β . Here we describe the syntheses of cyclopentanone 2a and cyclohexanones 3a and 3b. The ketone functional groups of these late stage intermediates served as handles to perform SAR studies of the C-ring on the benzopyran scaffold.

Cyclopentanone 2a was prepared as described in Scheme 1.7 Commercially available 2,5-dimethoxycinnamic acid (4) was treated with boron tribromide to remove the methyl groups and promote cyclization to 6-hydroxycoumarin (5), which was then protected as its MOMether to give 6. The Trost transition metal-catalyzed⁸ trimethylenemethane (TMM) cycloaddition⁸ was used to install a cyclopentane ring containing an exo-methylene group to give lactone 8. The exo-methylene group, which serves as a latent ketone, was dihydroxylated with osmium tetroxide and the resulting diol was protected as its cyclic carbonate using phosgene to give 9. The lactone 9 was deprotonated with LiHMDS and the resulting lactone enolate was reacted with N-phenyl triflamide⁹ to give lactone enol triflate 10. Negishi's palladium-catalyzed coupling¹⁰ conditions were used to couple the lactone enol triflate 10 with the aryl zinc reagent generated from aryl lithium 18 to give the MOM-protected 4-(4H-chromen-2-yl)phenol 11. The enol ether of 11 was easily reduced by hydrogenation over Pd/C to give exclusively the all cis-stereoisomer of flavanol analog 12. At this point the latent ketone could be revealed by hydrolyzing the cyclic carbonate of 12 with LiOH and then cleaving the diol to the ketone with sodium periodate in the same pot. This procedure gave MOM-protected cyclopentanone 13, which served as a late stage intermediate for the synthesis of C-ring functionalized derivatives of SERBA-1 (1a). The MOM-pro-

Scheme 1. Coumarin route to cyclopentanone intermediate 13 for Cring SAR. R = MOM; Reagents and conditions: (a) BBr₃, CH₂Cl₂, rt–82 °C; (b) MOMCl, *i*-Pr₂EtN, CH₃CN; (c) 7, Pd(OAc)₂, P(OEt)₃, THF, 60 °C; (d) i—OsO₄, NMO, *t*-BuOH, H₂O, THF; ii—COCl₂, Et₃N, CH₂Cl₂, 0 °C; (e) LiHMDS, THF, -78 °C; PhNTf₂, HMPA; (f) i—18, ZnCl₂, THF, 0 °C; ii—10, Pd(PPh₃)₄, THF, 50 °C; (g) 60 psi H₂, Pd/C, MeOH; (h) LiOH, H₂O, THF; NaIO₄; (i) HCl, H₂O, THF.

tecting groups of 13 could be removed under mildly acidic aqueous conditions to give cyclopentanone 2a.

The use of cyclopentanone 13 as a late stage intermediate for C-ring SAR studies is described in Scheme 2. Treatment of 13 with DAST¹¹ gave the difluoromethylene derivative 14, which was deprotected with aqueous HCl to give difluoromethylene cyclopentane 2b. Ruppert's reagent¹² was added to the ketone of 13 to give trifluoromethyl cyclopentanol 15. The tertiary alcohol of 15 was removed using Dolan and MacMillan's 13 modified Barton-McCombie¹⁴ radical deoxygenation conditions. The methyl oxalyl ester of 15 was prepared using methyl oxalyl chloride and DMAP, and was then subjected to radical reduction initiated by AIBN and heat in the presence of triphenyl silane. This procedure gave a nearly 1:1 mixture of trifluoromethyl cyclopentane diastereomers 16 and 17. The diastereomers were easily separated by silica gel chromatography and then deprotected to give the trifluoromethyl cyclopentanes **2c** and **2d**. 15

We wanted to compare the trifluoromethyl cyclopentane derivatives described in Scheme 2 to the simple methyl analog. This compound was prepared using the reductive cyclization route reported earlier⁵ and is described in Scheme 3. The bis-methyl ester of commercially available (+)-3-methylhexanedioic acid (19) was prepared using sulfuric acid and methanol. Treatment of 20 with sodium methoxide in methanol and toluene effected a Dieckmann cyclization to give a mixture of the 3- and 4-methyl substituted isomers of methyl 2-oxocyclopentanecarboxylate (21 and 22). This mixture could not be separated; however, when treated with triflic anhydride in the presence of Hunig's base, the 4-methyl isomer was preferentially converted to enol triflate 23, which could be easily purified by silica gel chromatography. Enol triflate 23 was carried through the reductive cyclization route to provide methyl cyclopentane 2e.

The synthesis route that led to cyclohexanones **3a** and **3b** is described in Scheme 4. The approach to cyclohexanone **3a** utilized a Diels-Alder reaction as the key step to install the C-ring. Beginning with hydroxy-coumarin

Scheme 2. Benzopyrans prepared from ketone intermediate **13**. Reagents and conditions: (a) DAST, ClCH₂CH₂Cl, 40 °C; (b) TMSCF₃, TBAF, THF; (c) i—ClCOCOOCH₃, DMAP, Et₃N, CH₂Cl₂; ii—Ph₃SiH, AIBN, toluene, 80 °C; (d) HCl, H₂O, THF.

Download English Version:

https://daneshyari.com/en/article/1366070

Download Persian Version:

https://daneshyari.com/article/1366070

<u>Daneshyari.com</u>