

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 2203-2209

Synthesis and herbicidal activity of novel pyrazolo[3,4-*d*]pyrimidin-4-one derivatives containing aryloxyphenoxypropionate moieties

Hui Liu,^a Hong-Qing Wang^b and Zhao-Jie Liu^{a,*}

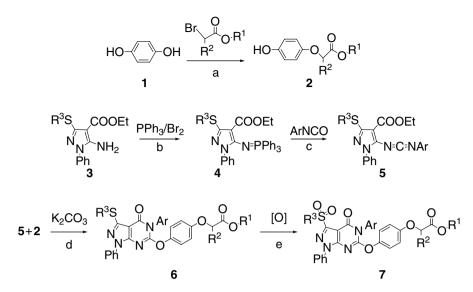
^aKey Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China ^bCollege of Chemistry and Chemical Engineering, Nanhua University, Hengyang, Hunan 421001, China

> Received 2 August 2006; revised 4 January 2007; accepted 23 January 2007 Available online 1 February 2007

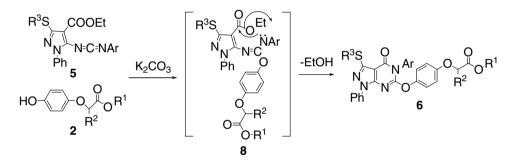
Abstract—The 6-(4-alkoxycarbonylalkoxy)phenoxy-3-alkylthio(alkylsulfonyl)-1-phenyl-5-(substituted phenyl)pyrazolo[3,4-*d*]pyrimidin-4-ones 6 and 7 have been synthesized via the tandem aza-Wittig and annulation reactions of the corresponding iminophosphoranes 4, aromatic isocyanates, and substituted phenols 2 in 52–98% yields. Their structures were clearly verified by spectroscopic data (IR, ¹H NMR, ¹³C NMR, MS, and elemental analysis or X-ray diffraction crystallography). And the results of preliminary bioassay indicated that these title compounds possess potential herbicidal activity against the root of rape and barnyard grass. © 2007 Elsevier Ltd. All rights reserved.

The derivatives of fused pyrimidinones have been the focus of great interest over many years due to the fact that many compounds containing a fused pyrimidinone ring play an important role in the biochemistry of the living cell.¹ Pyrazolo[3,4-*d*]pyrimidin-4-one derivatives also have extremely rich biological activities because of their structural similarity with purines,² they exhibit excellent antibacterial, antiphlogistic, and antitumor activities,³ and they are employed in the treatment of erectile dysfunction in male animals.⁴ In previous reports, various synthetic procedures have been devised for the conversion of *o*-aminonitriles and *o*-aminoesters bearing pyrazole ring to pyrazolopyrimindinone derivatives.⁵ However, 3-substituted-6-(4-alkoxycarb-onylalkoxy)phenoxy pyrazolo[3,4-*d*]pyrimidin-4-ones are not easily accessible by these existing methods.

Aryloxyphenoxypropionate (APP) derivatives are a very important class of herbicides in the international market.⁶ In recent years, heterocycles were introduced to the structures of APP, which lead to the development of a new series of highly efficient herbicides, such as whip, fenthiaprop-ethyl, quizalofop-ethyl, and heloxyfop-methyl.⁷ Furthermore, some heteroaryloxo-phenoxy carbonates are of good fungicidal activity and anti-cancer activity.⁸


Aza-Wittig reactions of iminophosphoranes have received increasing attention in view of their utility in the synthesis of nitrogen-containing heterocyclic compounds.9 Recently, aza-Wittig reactions of isocyanates were used to synthesize carbodiimides, which, in turn, were able to undergo a plethora of cyclization reactions, leading to the preparation of thienodipyrimidinones,¹⁰ quinazolines,¹¹ imidazolinones,¹² pteridinones,¹³ and fused pyrimidines.¹⁴ As the continuing work of our search for new herbicidal active heterocycles,¹⁵ we designed the structures which contain both pyrazolo-[3,4-d]pyrimidin-4-one and aryloxyphenoxypropionate (APP) moieties based on biochemical reasoning, and developed a new annulation process (Scheme 1), which proceeded smoothly via a tandem aza-Wittig and cyclization reaction to afford the novel title compounds 6-(4-alkoxycarbonylalkoxy)phenoxy-3-alkylthio(alkylsulfonyl)-1-phenyl-5-(substituted phenyl)pyrazolo[3,4-d]pyrimidin-4-ones 6 and 7, in order to obtain better herbicidal activity.

The iminophosphorane **4**, which was prepared from 3-alkylthio-5-amino-4-ethoxycarbonyl-1-phenylpyrazole **3**, reacted with aromatic isocyanate to afford carbodiimide **5**. Then reaction of 2-(4-hydroxyphenoxy)-carboxylate **2** with **5** provides intermediate guanidine **8**. In the presence of catalytic amount of potassium carbonate,


Keywords: Pyrazolo[3,4-*d*]pyrimidin-4-one; Aza-Wittig reaction; Synthesis; Herbicide.

^{*} Corresponding author. E-mail: zhjliu@mail.ccnu.edu.cn

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.01.083

Scheme 1. Synthesis of the title compounds 6 and 7. Reagents and conditions: (a) R^1ONa , R^1OH , $0-35 \circ C$, 6 h, yields 57–66%; (b) Et_3N , CH_2Cl_2 , 0 °C for 30 min then 25 °C for 26 h, yields 84%; (c) CH_2Cl_2 , rt, 2–5 h; (d) K_2CO_3 , CH_3CN , reflux, 5 h, yields 52–84%; (e) Na_2WO_4 ·H₂O, AcOH, 30% H₂O₂, 50 °C, 5 h, yields 75–98%.

Scheme 2. The cyclization of carbodiimide 5 to synthesize the title compounds 6.

the reaction took place to give 6 in moderate to good yields after recrystallization. This process can be rationalized in Scheme 2.

In this reaction, a variety of substituents can be tolerated in Ar group, such as electron-withdrawing groups (F,

Table 1. Yields of compounds 6 and 7

Compounds	RNCO	R ³	R ²	\mathbb{R}^1	Yields of 6 (%)	Yields of 7 (%)
	R =					
6a, 7a	Н	Me	Me	Me	80	75
6b, 7b	o-Cl	Me	Me	Me	73	78
6c, 7c	<i>m</i> -Me	Me	Me	Me	80	91
6d, 7d	<i>o</i> -F	Me	Me	Me	65	85
6e, 7e	Η	Me	Me	Et	84	98
6f, 7f	o-Cl	Me	Me	Et	71	83
6g, 7g	<i>m</i> -Me	Me	Me	Et	78	86
6h, 7h	<i>m</i> -Me	Me	Н	Et	82	77
6i, 7i	<i>m</i> -Me	Bn	Me	Et	52	90
6j, 7j	<i>m</i> -Me	Bn	Н	Et	66	82
6k, 7k	Η	Me	Me	<i>n</i> -Pr	82	78
6l, 7l	o-Cl	Me	Me	<i>n</i> -Pr	72	95
6m, 7m	<i>m</i> -Me	Me	Me	<i>n</i> -Pr	74	77

Cl) or electron-donating group (Me). R^1 , R^2 , and R^3 also could be various alkyl groups. Satisfactory yields of **6** were obtained when polar solvent acetonitrile was used;¹⁶ furthermore, compounds **6** could be oxidized by hydrogen peroxide (H₂O₂) using sodium wolframate (Na₂WO₄) as catalyst to give the corresponding compounds **7** at about 40 °C. The results are listed in Table 1.

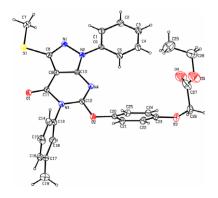


Figure 1. View and atom labeling of 6h.

Download English Version:

https://daneshyari.com/en/article/1366817

Download Persian Version:

https://daneshyari.com/article/1366817

Daneshyari.com