

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 5122-5126

Structure-based drug design of a highly potent CDK1,2,4,6 inhibitor with novel macrocyclic quinoxalin-2-one structure

Nobuhiko Kawanishi,* Tetsuya Sugimoto, Jun Shibata, Kaori Nakamura, Kouta Masutani, Mari Ikuta and Hiroshi Hirai

Department of Medicinal Chemistry, Banyu Tsukuba Research Institute in collaboration with Merck Research Laboratories, Okubo-3, Tsukuba 300-2611, Ibaraki, Japan

> Received 3 April 2006; revised 6 July 2006; accepted 11 July 2006 Available online 28 July 2006

Abstract—The design of a novel series of cyclin-dependent kinase (CDK) inhibitors containing a macrocyclic quinoxaline-2-one is reported. Structure-based drug design and optimization from the starting point of diarylurea 2, which we previously reported as a moderate CDK1,2,4,6 inhibitor [*J. Biol. Chem.* 2001, 276, 27548], led to the discovery of potent CDK1,2,4,6 inhibitor that were suitable for iv administration for in vivo study. © 2006 Elsevier Ltd. All rights reserved.

The cyclin-dependent kinase (CDK) protein family plays key roles in cell-cycle regulation in eukaryotic cells.² Orderly cell-cycle progression requires CDK activation, which is mainly controlled by expression of their activator subunit, cyclin. CDK1 (CDC2) complexed with cyclin B is key in G2/M phase progression. CDK4 and CDK6 complexed with cyclin D, and CDK2 complexed with cyclin E or A, sequentially phosphorylate retinoblastoma protein to facilitate G1/S progression. Retinoblastoma protein is a negative regulator of transcription factor E2F; when hyperphosphorylated, it releases E2F, which activates the transcription of genes whose products are critical for cell-cycle progression. Deregulation of the cell cycle is a hallmark of cancer;³ indeed, genetic or epigenetic changes that lead to cyclin overexpression, or the absence or reduction of CDK-inhibitor proteins are commonly observed in human cancers. Consequently, CDK1,2,4, and 6 are attractive targets for new anticancer drugs. Recently the clinical progress of CDK1,2,4, and 6 inhibitors has been reviewed.4

We previously reported the diarylurea class of compounds, represented by compound 1 (Table 1), to be novel selective CDK4 inhibitors.^{5,6} The pharmacologi-

0960-894X/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2006.07.026

cal profile and value in cancer therapy of a CDK1,2,4,6 inhibitor are expected to be different from those of the CDK4-selective inhibitors; a potent CDK1,2,4,6 inhibitor with minimum off-target activity is desired. In the course of our structure–activity relationship study of the diarylurea class of compounds, we found that compound **2**, which lacks side chains on the pyridine ring, inhibited CDK1,2,4, and 6 to a similar degree (Table 1).^{5,6} We took compound **2** as the starting point for the structure-based drug design of a potent CDK1,2,4,6 inhibitor.^{7,8}

The X-ray crystal structure of the CDK4 mimic CDK2 bound with compound 2 (Fig. 1) revealed that the urea hydrogen and carbonyl group formed hydrogen bonds with Val83 in the ATP-binding hinge region of the protein; compound 2 was coplanar with an intramolecular hydrogen bond between pyridine and the urea hydrogen, as shown in Table 1.^{1,9} Compound 2 was insufficiently potent so we hypothesized that conversion of the linear system to a ring to force coplanarity would improve potency.

The cyclic compounds that we synthesized were designed to form hydrogen bonds with Val83; their structures are shown in Table 2. Compound 3, which had a cyclic urea structure, had no activity against CDK4; steric hindrance might make coplanarity difficult (Fig. 2). In contrast, the quinoxaline-2-one compound (4) could take a coplanar conformation and fit, like

Keywords: CDK inhibitor; CDK1; CDK2; CDK4; CDK6; X-ray; CDK4 mimic CDK4; E2F.

^{*} Corresponding author. Tel.: +81 29 877 2222; fax: +81 29 877 2029; e-mail: nobuhiko_kawanishi@merck.com

Table 1.	IC ₅₀ values	of compounds 1	and 2 against members	of the CDK	family (enzyme assay)
----------	-------------------------	----------------	-----------------------	------------	-----------------------

Compound		IC ₅₀	(nM)	
	CDK1	CDK2	CDK4	CDK6
1	1800	440	2.3	ND ^a
2	122	80	42	71

^a ND, not determined.

Figure 1. X-ray crystal structure of **2** in the ATP-binding site of CDK4 mimic CDK2.^{1,9}

Table 2.	Structures and	IC50 values	of compounds 2-4	against CDK4
----------	----------------	-------------	------------------	--------------

We tried to improve the potency further by optimizing the isoindol-1-one moiety within the new quinoxalin-

Figure 2. Structures of compounds 2-4 showing 3's steric hindrance.

2-one template to provide a more favorable coplanar conformation in compounds **5** and **6**. As expected, they were better inhibitors of CDK4 (Table 3); compound **6** in particular showed high activity. The activities of compounds **4-6** correlate with their dihedral angles, which were optimized by a Gaussian method (HF/6-31G).¹⁰

Although the CDK-inhibitory activity of compound **6** was potent in the enzyme assay, its cellular potency was less good ($IC_{50} = 310 \text{ nM}$; E2F assay).¹¹ We used

Table 3. IC₅₀ values of compounds **4–6** against CDK4 and the dihedral angles between quinoxaline-2-one and benzoisothiazol-1-one $R^2 \sim N$

O H					
Compound	\mathbb{R}^2	IC ₅₀ (nM)	Dihedral angle ^a		
4	O N S	480	38.4		
5 (X = CH ₂)	O N X	170	34.7		
6 (X = S)		6.0	1.5		

^a Data optimized by a Gaussian method (HF/6-31G).¹⁰

Download English Version:

https://daneshyari.com/en/article/1367375

Download Persian Version:

https://daneshyari.com/article/1367375

Daneshyari.com