
Bioorganic & Medicinal Chemistry Letters 26 (2016) 3376-3379

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Three new 16-membered macrolide compounds from a genetically engineered strain *S. avermitilis* MHJ1011

^a Provincial Joint Engineering Laboratory of Biopesticide Preparation, School of Forestry & Biotechnology, Zhejiang Agricultural and Forestry University, Lin'An 311300, PR China ^b Department of New Drug Screening, Zhejiang Hisun Pharmaceutical Co., Ltd, Taizhou 318000, PR China

ARTICLE INFO

Article history: Received 19 January 2016 Revised 11 April 2016 Accepted 14 April 2016 Available online 28 May 2016

Keywords: Genetically engineered strain S. avermitilis MHJ1011 16-Membered macrolide compounds Acaricidal activity

ABSTRACT

Three new 16-membered macrolide compounds, 13α -O- α -L-oleandrosyl milbemycin β_3 (1), 13α -O- α -L-oleandrosyl-25-ethyl milbemycin β_3 (2), 13α -O- α -L-oleandrosyl-25-isopropyl milbemycin β_3 (3), were isolated from the genetically engineered strains *Streptomyces avermitilis* MHJ1011. Their structures were determined on the basis of spectroscopic analysis, including 1D and 2D NMR techniques as well as ESI-MS and comparison with data from the literature. Both compounds **1–3** displayed impressive acaricidal activity against larval mites with the IC₅₀ values of 0.0327, 0.0276 and 0.0235 mg/L, respectively, which are higher than those of 13α -hydroxy milbemycin β_3 and 13α -hydroxy-25-ethyl milbemycin β_3 .

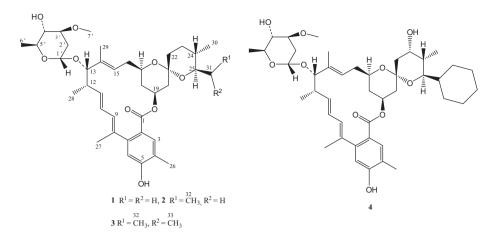
© 2016 Elsevier Ltd. All rights reserved.

Microbial metabolites, especially 16-membered macrocyclic lactone antibiotics used as potential pesticides and veterinary drugs have attracted great interest due to their latent high activity and low toxicity, such as avermectins and milbemycins.¹⁻⁴ Such novel macrolides could in themselves provide the basis for new pharmaceuticals or could serve as scaffolds for new semisynthetic analogs.^{5–7} In our previous paper,^{8,9} we reported the isolation and characterization of five new 16-membered macrocyclic lactone antibiotics from the fermentation broth of the genetically engineered strain Streptomyces avermitilis MHJ1011.¹⁰ In our continuing chemical study of this genetically engineered strain, three new milbertycin analogs, 13α -O- α -L-oleandrosyl milbertycin β_3 (1), 13α -O- α -L-oleandrosyl-25-ethyl milbemycin β_3 (2), 13α -O- α -L-oleandrosyl-25-isopropyl milbemycin β_3 (**3**) (Fig. 1) were isolated and purified from the fermentation broth of S. avermitilis MHJ1011.¹¹ In this Letter, we report the isolation, structural elucidation and acaricidal activity of the three new compounds.

The molecular formula of compound **1** was established to be $C_{38}H_{54}O_9$ as deduced from the high-resolution electrospray ionization (HRESI)-MS at m/z 655.2573 [M+H]⁺(calcd for $C_{38}H_{55}O_9$ 655.2577) and ¹³C NMR data (Table 1).¹² The ¹H NMR spectrum

J = 6.5 Hz, H₃-30; $\delta_{\rm H}$ 1.14, 3H, d, J = 6.3 Hz, H₃-31; $\delta_{\rm H}$ 1.16, 3H, d, J = 6.9 Hz, H₃-28; $\delta_{\rm H}$ 1.28, 3H, d, J = 6.2 Hz, H₃-6'), one methoxy signal ($\delta_{\rm H}$ 3.54, 3H, s), two olefinic methyl signals ($\delta_{\rm H}$ 1.58, 3H, br s, H₃-29; $\delta_{\rm H}$ 2.06, 3H, s, H₃-27), one aromatic methyl ($\delta_{\rm H}$ 2.23, 3H, s, H₃-26), one trans-double bond ($\delta_{\rm H}$ 5.43, 1H, dd, I = 14.9, 10.1 Hz, H-11; $\delta_{\rm H}$ 6.08, 1H, dd, I = 14.9, 10.9 Hz, H-10) and two downfield proton signals ($\delta_{\rm H}$ 6.61, 1H, s, H-6; $\delta_{\rm H}$ 7.33, 1H, s, H-3). The ¹³C NMR and HMQC spectra revealed 38 carbon resonances, including an ester carbonyl carbon at δ_{C} 169.7 (s), a ketal carbon at $\delta_{\rm C}$ 97.7 (s), an acetal carbon at $\delta_{\rm C}$ 94.8 (d), a methoxy carbon at $\delta_{\rm C}$ 56.9 (q), nine aliphatic methines (8 oxygenated), six sp² methines, six sp² quaternary carbons, in addition to six aliphatic methylenes and seven methyl carbons. By detailed comparison of the ¹H and ¹³C NMR data (Table 1) of **1** with those of **4**, ¹³ a metabolite previously isolated from Streptomyces avermitilis NEAU1069, it was revealed that compound 1 was structurally similar to compound **4** (Fig. 1). The differences between **1** and **4** were in C-23 and C-25. The ¹H–¹H COSY and HMBC spectra (Fig. 2) fulfilled the assignment of the structure of **1**. The correlation of H₃-31/H-25 in the ¹H–¹H COSY spectrum and the observed HMBC correlations from $\delta_{\rm H}$ 1.14 to C-24, C-25, from $\delta_{\rm H}$ 0.82 to C-23, C-24 and C-25 demonstrated that the oxymethine group at C-23 and the cyclohexyl moiety at C-25 in 4 were replaced by a methylene and a methyl, respectively, in 1. As a result, the gross structure of 1 was established. The relative stereochemistry of 1 was assigned as occurring with that of tenvermectins A and B.⁸

of **1** displayed four doublet aliphatic methyls ($\delta_{\rm H}$ 0.82, 3H, d,



^{*} Corresponding authors. Tel.: +86 576 8882 7216; fax: +86 576 8882 8299.

E-mail addresses: anlchen@126.com (A.-L. Chen), jdwang@hisunpharm.com (J.-D. Wang).

 $^{^\}dagger$ These two authors (Jun-Jie Pan and Xu Wan) contributed equally to this work and should be considered as co-first authors.

Figure 1. The structures of compounds **1–4**.

Table 1	
	NMR data of compounds 1–3 (coupling constants in parenthesis)

No.	1		2		3	
	$\delta_{\rm H}$	δ_{C}	$\delta_{\rm H}$	δ_{C}	δ_{H}	δ_{C}
1		169.7 s		169.6 s		169.6 s
2		124.1 s		123.7 s		123.6 s
3	7.33 s	131.9 d	7.38 s	132.1 d	7.39 s	132.1 c
4		122.5 s		122.6 s		122.6 s
5		155.6 s		155.9 s		155.9 s
6	6.61 s	114.1 d	6.62 s	114.1 d	6.60 s	114.1 c
7		144.0 s		144.2 s		144.3 s
8		134.5 s		134.7 s		134.7 s
9	5.72 d (11.0)	128.6 d	5.73 d (10.8)	128.4 d	5.71 d (10.9)	128.4 0
10	6.08 dd (14.9, 11.0)	126.9 d	6.10 dd (15.1, 10.8)	127.0 d	6.08 dd (15.0, 10.9)	127.0 c
11	5.43 dd (14.9, 10.1)	135.8 d	5.47 dd (15.1, 10.2)	135.7 d	5.46 dd (15.0, 10.0)	135.7 c
12	2.52 m	41.0 d	2.53 m	40.9 d	2.52 m	40.9 d
13	4.00 br s	82.7 d	4.02 br s	82.5 d	4.00 br s	82.9 d
14		134.0 s		134.1 s		134.1 s
15	4.96 d (10.4)	118.8 d	4.94 d (9.4)	118.8 d	4.92 d (10.0)	118.9 c
16	2.29 m	33.4 t	2.30 m	33.3 t	2.26 m	33.3 t
	2.42 m		2.40 m		2.33 m	
17	3.75 m	67.5 d	3.75 m	67.5 d	3.76 m	67.4 d
18	1.97 m	36.9 t	1.98 m	36.8 t	1.94 m	36.8 t
	0.73 t (12.0)		0.76 t (12.0)		0.75 t (12.3)	
19	5.56 m	67.9 d	5.54 m	68.1 d	5.50 m	68.2 d
20	1.94 m	41.1 t	1.96 m	41.3 t	1.92 m	41.3 t
	1.39 m		1.43 d (12.0)		1.39 m	
21		97.7 s		97.6 s		97.6 s
22	1.54 m	35.8 t	1.52 m	35.8 t	1.49 m	35.8 t
	1.62 m		1.67 m		1.64 m	
23	1.50 m	27.4 t	1.52 m	28.0 t	1.50 m	28.1 t
24	1.27 m	36.6 d	1.38 m	34.3 d	1.31 m	34.4 d
25	3.33 m	71.3 d	3.13 t (7.6)	75.8 d	3.10 dd (8.9, 1.6)	78.2 d
26	2.23 s	15.2 q	2.24 s	15.3 q	2.22 s	15.3 q
27	2.06 s	18.1 q	2.07 s	18.2 q	2.05 s	18.2 q
28	1.16 d (6.9)	19.7 q	1.19 d (6.8)	19.7 q	1.16 d (6.8)	19.6 q
29	1.58 br s	15.6 q	1.59 br s	15.6 q	1.58 br s	15.6 q
30	0.82 d (6.5)	17.9 q	0.83 d (6.4)	17.7 q	0.85 d (6.6)	19.2 q
31	1.14 d (6.3)	19.5 q	1.39 m	25.7 t	1.47 m	28.3 d
			1.69 m			
32			1.00 t (7.2)	9.9 q	1.03 d (6.8)	20.8 q
33					0.79 d (6.0)	17.4 q
1′	4.85 d (3.5)	94.8 d	4.85 d (3.2)	94.9 d	4.83 d (3.5)	94.9 d
2′	1.51 m	34.0 t	1.53 m	34.2 t	1.55 m	34.2 t
	2.35 t (7.5)		2.36 t (7.6)		2.35 t (7.7)	
3′	3.58 m	78.3 d	3.60 m	78.3 d	3.60 m	78.3 d
4′	3.17 t (9.1)	76.2 d	3.19 t (9.1)	76.2 d	3.18 t (9.1)	76.2 d
5′	3.88 dd (9.5, 6.6)	67.8 d	3.90 dd (9.4, 6.3)	67.9 d	3.89 dd (9.4, 6.3)	67.9 d
6′	1.28 d (6.2)	17.7 q	1.29 d (6.1)	17.8 q	1.28 d (6.2)	17.7 q
7′	3.54 s	56.9 q	3.54 s	56.8 q	3.51 s	56.8 q

Download English Version:

https://daneshyari.com/en/article/1368709

Download Persian Version:

https://daneshyari.com/article/1368709

Daneshyari.com