

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Chemical constituents from *Kandelia candel* with their inhibitory effects on pro-inflammatory cytokines production in LPS-stimulated bone marrow-derived dendritic cells (BMDCs)

Le Duc Dat ^{a,b}, Nguyen Phuong Thao ^{a,b}, Bui Huu Tai ^{a,b}, Bui Thi Thuy Luyen ^b, Sohyun Kim ^c, Jung Eun Koo ^c, Young Sang Koh ^c, Nguyen The Cuong ^d, Nguyen Van Thanh ^a, Nguyen Xuan Cuong ^a, Nguyen Hoai Nam ^a, Phan Van Kiem ^a, Chau Van Minh ^{a,*}, Young Ho Kim ^{b,*}

- a Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Nghido, Caugiay, Hanoi, Vietnam
- ^b College of Pharmacy, Chungnam National University, Daejeon 305-764, South Korea
- ^c School of Medicine, Brain Korea 21 PLUS Program, and Institute of Medical Science, Jeju National University, Jeju 690-756, South Korea
- ^d Institute of Ecology and Biological Resources, VAST, 18 Hoang Quoc Viet, Nghido, Caugiay, Hanoi, Vietnam

ARTICLE INFO

Article history: Received 12 November 2014 Revised 5 February 2015 Accepted 20 February 2015 Available online 27 February 2015

Keywords: Kandelia candel Rhizpphoraceae Kandelside Anti-inflammatory activity

ABSTRACT

Chemical investigation of *Kandelia candel* resulted in the isolation of 19 compounds (**1–19**), including one new sesquiterpene glycoside, kandelside (**1**), three megastigman glycoside compounds (**7–9**), 16 known phenolic compounds (**2–6** and **10–19**). Structures of the isolated compounds were elucidated based on spectral data comparison with reported values. Isolated compounds were also evaluated for their inhibitory effects on the production of pro-inflammatory cytokines interleukin (IL)-12 p40, IL-6, and tumor necrosis factor α (TNF- α) in lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells. Among these compounds, compound **9** exhibited strong inhibitory activity against IL-6 production (IC₅₀ = 0.07 ± 0.05 μ M) and moderate inhibitory activity against TNF- α production (IC₅₀ = 49.86 ± 1.02 μ M), but exhibited no activity on IL-12 p40 production. Compounds **5** and **6** significantly inhibited IL-12 p40, IL-6, and TNF- α production with IC₅₀ values of 11.68 ± 0.38, 44.52 ± 1.08, and 28.73 ± 0.96 μ M, respectively.

© 2015 Elsevier Ltd. All rights reserved.

Mangroves are a diverse group of trees that grow in intertidal tropical and subtropical forests. In mangrove species, phenolics are abundant components that prevent damage from herbivores^{1,2} and exhibit a diversity of other biological activities of historic and potential importance to humans.³ Mangrove extracts have been used for diverse medicinal purposes and are known to exhibit antibacterial, antiherpetic, and antihelminthic activities.⁴

Kandelia candel (Rhizophoraceae) is most widely distributed in the Asian coastline. According to previous study, the hypocotyls of *K. candel* have high levels of phenolic compounds.⁵ Phenolics are also important components in the leaf extract of *K. candel*. The bioactivity of phenolic compounds were screened for their antioxidant activities. Total phenolic content in the leaves of *K. candel* was about 130.32 mg/g, evaluated with the pharmacological effect for anti-oxidant activity.⁶ While the anti-inflammatory activity was not investigated at the moment.

E-mail addresses: cvminh@vast.vn (C.V. Minh), yhk@cnu.ac.kr (Y.H. Kim).

Many studies have shown that inflammation is part of a complex biological response of vascular tissue toward harmful exogenous stimuli⁷ and is mediated by a variety of soluble factors, including a group of secreted polypeptides known as cytokines, which play a key role in the modulation of immune responses.

BMDCs play a key role in the interface between the innate and acquired immune systems. Activated BMDCs perform crucial functions in immune and inflammatory responses via the pathogen-associated molecular patterns (PAMPs)-stimulated production of pro-inflammatory cytokines such as IL-12 p40, IL-6 and TNF- α . This study describes the isolation and structure elucidation of 19 compounds (see Fig. 1) were isolated from *K. candel*, as well as an evaluation of their in vitro anti-inflammatory effects.

The methanolic extract of *K. candel* were partitioned into fractions and isolated by multiple chromatographic steps over silica gel, Sephadex LH-20, and YMC RP-18 column chromatography (CC)⁹ to yield compounds **1–19**.¹⁰

Kandelside ($\mathbf{1}$)¹¹ was obtained as a white amorphous powder. According to high-resolution electron spray ionization mass spectroscopy (HR-ESI-MS), a basic ion peak at m/z 439.2315 [M+Na]^{*}

^{*} Corresponding authors. Tel.: +84 43 7917053; fax: +84 43 7917054 (C.V.M.); tel.: +82 42 821 5933; fax: +82 42 823 6566 (Y.H.K.).

Figure 1. The structures of isolated compounds (1-19) from K. candel.

(calcd. for C₂₁H₃₆O₈Na, 439.2410) confirmed its molecular structure of C₂₁H₃₆O₈. The infrared (IR) spectrum of compound 1 showed absorption due to a hydroxyl group (3373 cm⁻¹). The ¹³C-nuclear magnetic resonance (NMR) spectra of **1** illustrated signals of 21 carbon atoms, including four methyls, four methylenes, ten methines, and three quaternary carbons, which were identified by DEPT-135 experiments (see Table 1). Signals representing one anomeric carbon (δ_C 102.4, C-1'), six oxymethines (δ_C 88.0, 78.5, 78.5, 78.4, 75.0, and 71.9), one oxygenated quaternary (δ_C 73.9, C-12), and one oxymethylene ($\delta_{\rm C}$ 63.1, C-6') were also observed. The ¹H NMR spectrum of **1** showed an anomeric proton signal at $\delta_{\rm H}$ 4.20 (1H, d, I = 7.8 Hz, H-1'). Therefore, the glucose unit was suggested to be connected to aglycon in a β -glycosidic linkage. Moreover, the ¹H NMR spectrum showed four methyl groups at $\delta_{\rm H}$ 0.95 (3H, s, H-11), $\delta_{\rm H}$ 1.05 (3H, s, H-10), $\delta_{\rm H}$ 1.10 (3H, s, H-14), and $\delta_{\rm H}$ 1.12 (3H, s, H-13). The ¹H and ¹³C NMR of compound **1** were similar to those of 2α,12-dihydroxycopacamphan-15-one 2-O-β-D-glucopyranoside, 12 except for the replacement of a carbonyl group in 2α,12-dihydroxycopacamphan-15-one 2-O-β-D-glucopyranoside by oxymethine, and a glucose moiety attach to C-8 in 1. The structure of 1 was further confirmed by heteronuclear multiple

bond correlation (HMBC) and heteronuclear single quantum coherence (HSQC) experiments. The placement of the oxymethine carbon at C-15 ($\delta_{\rm C}$ 88.0) was determined by HMBC correlation signals between H-4 ($\delta_{\rm H}$ 1.52), H-5 ($\delta_{\rm H}$ 1.39), H-6 ($\delta_{\rm H}$ 1.76), H-11 ($\delta_{\rm H}$ 0.95), and C-15 ($\delta_{\rm C}$ 88.0), confirmed with HSQC correlation between H-15 (δ_H 3.44, br s) and C-15 (δ_C 88.0). The correlations between H-4 (δ_H 1.52), H-13 (δ_H 1.12), H-14 (δ_H 1.10) and C-12 (δ_C 73.9), as well as H-11 ($\delta_{\rm H}$ 0.95), H-6 ($\delta_{\rm H}$ 1.76) and C-8 ($\delta_{\rm C}$ 78.5), were also observed in HMBC spectra, which was confirmed with HSQC correlation between H-8 (δ_H 4.28, dd, J = 3.0, 7.8 Hz) and C-8 (δ_C 78.5). According to the signal correlation between $H_{glc-1'}$ (δ_H , d, J = 7.8 Hz) and C-8 (δ_C 78.5), the glucose moiety was determined to connect to C-8 of aglycon. In addition, the hydrolysis of 1 was determined as p-glucoside. 13 Detailed analyses of other HMBC correlations (see Fig. 2) clearly identified the planar structure of compound 8,12,15-trihydroxycopacamphan-8-O-β-D-1 as glucopyranoside.

The relative configuration of three chiral centers (C-1, C-4, and C-9) in **1** were assigned to the same as those of 2α , 12-dihydroxycopacamphan-15-one 2-O- β -D-glucopyranoside, 12 which was elucidated by X-ray diffraction analysis, and showed that CH₃-10,

Download English Version:

https://daneshyari.com/en/article/1369077

Download Persian Version:

https://daneshyari.com/article/1369077

Daneshyari.com