

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Design, synthesis and biological evaluation of c-Met kinase inhibitors bearing 2-oxo-1,2-dihydroquinoline scaffold

Hong Cui a,†, Xia Peng b,†, Jian Liu a,†, Chunhua Ma a, Yinchun Ji b, Wei Zhang a, Meiyu Geng b,*, Yingxia Li a,*

ARTICLE INFO

Article history: Received 20 March 2016 Revised 12 July 2016 Accepted 29 July 2016 Available online 30 July 2016

Keywords: c-Met Synthesis Antiproliferative activity

ABSTRACT

A series of 2-oxo-1,2-dihydroquinoline-containing c-Met inhibitors were designed, synthesized and evaluated for their in vitro activities targeting c-Met. Most compounds showed high potency against c-Met with IC_{50} values in the single-digit nM range. Among these compounds, two target compounds, namely **1h** and **1n**, stood out as the most potent c-Met inhibitors with IC_{50} s of 0.6 and 0.7 nM, respectively. And **1a** exhibited higher potency than **BMS-777607** did with respect to the inhibition of cell proliferation. The introduction of electron-donating substituent was favorable for the activities of the compounds to some extent. Furthermore, molecular docking studies also gave encouraging results that supported this work. © 2016 Elsevier Ltd. All rights reserved.

c-Met is a prototype member of a subfamily of heterodimeric receptor tyrosine kinases (RTKs). The physiological functions of the c-Met pathway are restricted to mammalian development and tissue homeostasis. Abnormal activation of c-Met has been reported in many types of cancers, occurring as a consequence of gene amplification or rearrangement, transcriptional regulation, as well as autocrine or paracrine ligand stimulation. Importantly, deregulated c-Met activation has been associated with poor clinical outcomes. ^{1,2} In addition; c-Met signaling is responsible for the resistance acquisition of approved therapies. ^{3,4} Thus, c-Met axis has emerged as a favorable target for cancer therapy research.

To date, a respectable number of c-Met inhibitors have already been reported and some of them are launched or in clinical trials (Fig. 1)^{2.5–11} Literature reported c-Met inhibitor **BMS-777607** (Fig. 2a) showed very potent c-Met inhibition activity. ¹² An X-ray crystal structure of **BMS-777607** complexed to the Met kinase domain (Fig. 2b) discloses the mode bound to Met kinase domain. ¹² The pyridine nitrogen accepts a hydrogen bond with the backbone NH of Met 1160, while the 2-amino group donates a hydrogen bond to the backbone carbonyl of Met1160. The central phenyl ring forms π – π stacking with Phe1223. The carbonyl of pyridin-2-one accepts a hydrogen bond with the backbone NH of Asp1222. The terminal phenyl ring occupies a deep hydrophobic pocket consisted of Phe1134, Leu1195, and Phe1200.

In view of the mode bound to Met kinase domain, we found that the right side of pyridin-2(1*H*)-one in **BMS-777607** was spacious. So we combined a benzene ring to the pyridin-2(1*H*)-one motif and designed a series of 2-oxo-1,2-dihydroquinoline-containing new c-Met inhibitors (Fig. 2c). Herein we report the synthesis, structural optimization and pharmacological evaluation of the designed compounds **1a-t** as c-Met inhibitors.

Compounds **1a–t** was prepared from commercially available 2-nitrobenzaldehyde. The synthesis of compounds **1a–t** is outlined in Scheme 1. Knoevenagel condensation of 2-nitrobenzaldehyde with ethyl malonate gave **2**, followed by reduction of the nitro group to afford **3**. Then C–N coupling of **3** with substituted phenylboronic acid obtained **4a–t**, which was subjected to hydrolysis to provide intermediates **5a–t**. 4-(4-Amino-2-fluorophenoxy)-3-chloropicolinamide prepared by using the commercially available 3,4-dichloropyridine¹² was condensed with **5a–t** respectively to afford **6a–t**. Finally, a Hoffman rearrangement resulted in target compounds **1a–t** in 60–82% yields.

The first designed compounds ${\bf 1a}$ and ${\bf 1b}$ were assayed with the enzymatic activities against c-Met. As expected, ${\bf 1a}$ and ${\bf 1b}$ showed high potency with an IC₅₀ value of 1.8 nM and 9.5 nM, which indicated the benzene-fused strategy was feasible. Compound ${\bf 1a}$ displayed proliferative inhibition against EBC-1 cell with an IC₅₀ of 67.8 nM while the IC₅₀ of ${\bf 1b}$ with a p-fluoro substituent on the phenyl ring A was more than 1000 nM.

Encouraged by these initial results, we explored the effects of various substituents at phenyl ring A on the inhibitory activity. As illustrated in Table 1, most of the designed compounds showed excellent inhibition against the c-Met enzyme. The inhibitory

^a School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China

b Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

^{*} Corresponding authors. Tel./fax: +862150806072 (M.G.), +862151980127 (Y.L.). E-mail addresses: mygeng@simm.ac.cn (M. Geng), liyx417@fudan.edu.cn (Y. Li).

[†] These authors contributed equally to this work.

Figure 1. Some representative c-Met inhibitors and their structural characteristics.

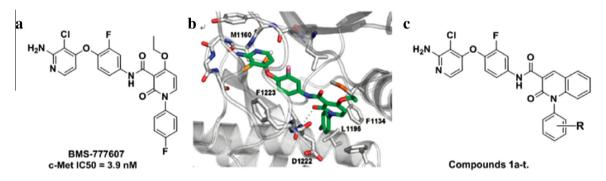


Figure 2. (a) BMS-777607, (b) crystal structure of BMS-777607 bound to Met kinase domain, (c) structure of designed compounds 1a-t.

$$\begin{array}{c} \text{CHO} \\ \text{NO}_2 \end{array} \begin{array}{c} \text{COOMe} \\ \text{$$

Scheme 1. Reagents and conditions: (a) potassium carbonate, dimethyl malonate, acetic anhydride, 4 h, $80 \,^{\circ}$ C, 88%; (b) H_2-Pd/C , MeOH, overnight, 96%; (c) substituted phenylboronic acid, CH_2Cl_2 , $Cu(OAc)_2$, TEA, molecular sieve, rt, 24 h, 60-82%; (d) KOH, MeOH, reflux, quantitative; (e) (i) sulfuryl dichloride, toluene, reflux; (ii) $4-(4-amino-2-fluorophenoxy)-3-chloropicolinamide, DIPEA, THF, <math>0 \,^{\circ}$ C-rt, 55-78%; (f) PhI(OAc)₂, ethyl acetate, CH_3CN , H_2O , rt, 60-82%.

activities of the meta-substituted analogues (**1e**, **1g**, **1i**) increased in the following order: $-OMe(\mathbf{1i}) > -Me(\mathbf{1g}) > -F(\mathbf{1b})$. The results above indicated that the introduction of electron-donating substituent is favorable for the activities. This phenomenon was also observed in para-substituted compounds. The results suggested

that the inhibitory activities may be influenced by the electron cloud density of the ring A. Nevertheless, compounds **1d** and **1e** with chloro substituted were exceptions with IC₅₀ values of 132.7 and 1.0 nM, respectively. In the meantime, we discovered that most disubstituted compounds **1j-t** were nearly equipotent

Download English Version:

https://daneshyari.com/en/article/1369426

Download Persian Version:

https://daneshyari.com/article/1369426

<u>Daneshyari.com</u>