Synthesis and bioactivities of novel pyrazole oxime derivatives containing a $1,2,3$-thiadiazole moiety

Hong Dai ${ }^{\text {a,b }}$, Shushan Ge $^{\mathrm{b}}$, Gang Li ${ }^{\text {a }}$, Jia Chen ${ }^{\text {a }}$, Yujun Shi ${ }^{\text {a,* }}$, Linyu Ye ${ }^{\text {a }}$, Yong Ling ${ }^{\text {b,* }}$
${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
${ }^{\mathrm{b}}$ School of Pharmacy, Nantong University, Nantong 226001, People's Republic of China

A R T I C L E I N F O

Article history:

Received 7 May 2016
Revised 8 July 2016
Accepted 28 July 2016
Available online 29 July 2016

Keywords:

Pyrazole oxime
1,2,3-Thiadiazole
Synthesis
Bioactivity

Abstract

A series of new pyrazole oxime compounds bearing a 1,2,3-thiadiazole ring were designed, synthesized, and evaluated for their insecticidal, acaricidal and antitumor activities. Bioassays demonstrated that some title compounds displayed satisfactory insecticidal and acaricidal properties. Especially, compounds $\mathbf{8 d}$ and $\mathbf{8 h}$ exhibited 90% insecticidal activities against Aphis craccivora at the concentration of $100 \mu \mathrm{~g} / \mathrm{mL}$. Interestingly, some of the target compounds possessed significant antitumor activities against four human cancer cell lines in vitro. Among them, compounds $\mathbf{8 e}\left(\mathrm{IC}_{50}=7.19 \mu \mathrm{M}\right), 8 \mathbf{1}$ ($\left.\mathrm{IC}_{50}=6.56 \mu \mathrm{M}\right), \mathbf{8 m}\left(\mathrm{IC}_{50}=8.12 \mu \mathrm{M}\right)$, and $\mathbf{8 r}\left(\mathrm{IC}_{50}=7.06 \mu \mathrm{M}\right)$ had better inhibitory activities against HCT-116 cells than the control 5-fluorouracil ($\mathrm{IC}_{50}=29.50 \mu \mathrm{M}$). Additionally, compounds $\mathbf{8 j}, \mathbf{8 m}$, and $8 \mathbf{r}$ showed wonderful inhibitory activities against SGC-7901 cells with the IC_{50} values of $11.46,9.41$, and $8.64 \mu \mathrm{M}$, respectively, which were superior to that of the control 5-fluorouracil.

© 2016 Elsevier Ltd. All rights reserved.

In the past few decades, heterocycles plays a vital role in the field of agriculture and medicine. Pyrazole is a classical nitrogencontaining heterocycle which extensively exists in natural products and non-natural products. ${ }^{1,2}$ Most of these pyrazole derived compounds have been investigated to possess various bioactivities such as insecticidal, ${ }^{3}$ acaricidal, ${ }^{4,5}$ antibacterial, ${ }^{6,7}$ and anticancer activities. ${ }^{8,9}$ Pyrazole oxime derivatives are important parts of pyrazole compounds with diverse bioactivities like insecticidal, ${ }^{10}$ fungicidal, ${ }^{11}$ and anti-tobacco mosaic virus (TMV) activity. ${ }^{12}$ For instance, Fenpyroximate (Fig. 1), a potent acaricide carrying a pyrazole oxime in the structure, is widely used in crop protection. ${ }^{13,14}$ Furthermore, in 2005 Park et al. also found some Fenpyroximate analogues displayed interesting antitumor activities. ${ }^{15}$ This endowed a great impetus to the study of biologically active pyrazole oxime compounds.

On the other hand, as an important five-member heterocycle, 1,2,3-thiadiazole derivatives have also attracted considerable attention due to their versatile bioactivities including fungicidal, ${ }^{16}$ insecticidal, ${ }^{17}$ and antivirus activities. ${ }^{18}$ Recently, Fan et al. reported several series of 1,2,3-thiadiazole derivatives bearing other heterocyclic ring like triazole, and so on, and some of these compounds exhibited good anti-TMV activities. ${ }^{19,20}$ More recently, Xu et al. synthesized a series of new 1,2,3-thiadiazoles that displaying perfect antivirus activity against TMV. ${ }^{21}$ Additionally,

[^0]many 1,2,3-thiadiazole containing derivatives are found to exhibit potent antiamoebic, ${ }^{22}$ and antitumor property. ${ }^{23}$ Therefore, 1,2,3-thiadiazole-based compounds became a focus of chemical and pharmaceutical research.

Inspired by these facts, we envisioned that introduction of a substituted 1,2,3-thiadiazole ring into pyrazole oxime scaffold might produce some compounds possessing a wide spectrum bioactivities. In the present study, we describe the synthesis of a number of novel pyrazole oxime derivatives bearing a $1,2,3$-thiadiazole moiety. Moreover, all the title compounds have been investigated for their biological activities containing insecticidal, acaricidal, and antitumor activities.

The synthetic route of the target compounds 8a-8t and 10a-10c was depicted in Scheme 1. The key intermediate 4-alkyl-5-chloromethyl-1,2,3-thiadiazole (4) was synthesized from compound 1. The condensation of intermediate 1 with methyl hydrazinocarboxylate afford compound $2 .{ }^{24}$ Intermediate $\mathbf{2}$ reacted with thionyl chloride to give compound 3. ${ }^{25}$ Intermediate $\mathbf{3}$ was treated by two steps including reduction and chlorination to obtain the crucial intermediate 4-alkyl-5-chloromethyl-1,2,3-thiadiazole (4). Pyrazole oximes (7) and (9) were prepared from compound 5. Intermediate 5 was condensed with sodium substituted phenol at $105^{\circ} \mathrm{C}$ to afford 5-aryloxy substituted pyrazole carbaldehyde (6), ${ }^{26}$ which then reacted with hydroxylamine hydrochloride under basic condition to produce 5 -aryloxy pyrazole oximes (7) smoothly. Similarly, compound 5 was transformed into 5-chloropyrazole oxime ($\mathbf{9}$) by the treatment with hydroxylamine

$\mathrm{R}^{1}=\mathrm{Me}, \mathrm{Et}, \mathrm{n}-\mathrm{Pr}$
$\mathrm{R}^{2}=\mathrm{Me}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, etc.

$\mathrm{R}^{1}=\mathrm{Me}, \mathrm{Et}, \mathrm{n}-\mathrm{Pr}$

Target Compounds

Figure 1. Design of target compounds.

Scheme 1. Synthesis of compounds 8a-8t, 10a-10c. Reagents and conditions: (a) $\mathrm{NH}_{2} \mathrm{NHCOOCH}_{3}, \mathrm{CH}_{3} \mathrm{CH} 2 \mathrm{OH}, \mathrm{rt}, 10 \mathrm{~h}$; (b) $\mathrm{SOCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to rt, 24 h ; (c) (i) $\mathrm{NaBH} 4, \mathrm{I}_{2}$, $\mathrm{CH}_{3} \mathrm{OH}, 0^{\circ} \mathrm{C}$ to rt, 3 h ; (ii) SOCl_{2}, reflux, 30 min ; (d) sodium substituted phenol, DMSO, $105^{\circ} \mathrm{C}, 8-18 \mathrm{~h}$; (e) $\mathrm{NH} \mathrm{H}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{KOH}, \mathrm{CH}_{3} \mathrm{OH}$, reflux, 6-17 h; (f) compound 4, $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{CH}_{3} \mathrm{CN}$, reflux, $7-20 \mathrm{~h}$; (g) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{KOH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, reflux, 8 h ; (h) compound 4, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, $10-13 \mathrm{~h}$.
hydrochloride. Finally, compound 7 or 9 was admixed with 4-alkyl-5-chloromethyl-1,2,3-thiadiazole (4) in $\mathrm{CH}_{3} \mathrm{CN}$ using potassium carbonate as alkali to form corresponding pyrazole oximes
containing a $1,2,3$-thiadiazole moiety successfully ${ }^{27}$ The title compounds have all been confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and elemental analyses (detailed information see Supplementary data).

https://daneshyari.com/en/article/1369430

Download Persian Version:
https://daneshyari.com/article/1369430

Daneshyari.com

[^0]: * Corresponding authors. Tel.: +86 51385012851.

 E-mail addresses: yjshi2015@163.com (Y. Shi), yling2015@aliyun.com (Y. Ling).
 http://dx.doi.org/10.1016/j.bmcl.2016.07.068
 0960-894X/® 2016 Elsevier Ltd. All rights reserved.

