Bioorganic & Medicinal Chemistry Letters 26 (2016) 4504-4507

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and bioactivities of novel pyrazole oxime derivatives containing a 1,2,3-thiadiazole moiety

Hong Dai^{a,b}, Shushan Ge^b, Gang Li^a, Jia Chen^a, Yujun Shi^{a,*}, Linyu Ye^a, Yong Ling^{b,*}

^a College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
^b School of Pharmacy, Nantong University, Nantong 226001, People's Republic of China

ARTICLE INFO

Article history: Received 7 May 2016 Revised 8 July 2016 Accepted 28 July 2016 Available online 29 July 2016

Keywords: Pyrazole oxime 1,2,3-Thiadiazole Synthesis Bioactivity

ABSTRACT

A series of new pyrazole oxime compounds bearing a 1,2,3-thiadiazole ring were designed, synthesized, and evaluated for their insecticidal, acaricidal and antitumor activities. Bioassays demonstrated that some title compounds displayed satisfactory insecticidal and acaricidal properties. Especially, compounds **8d** and **8h** exhibited 90% insecticidal activities against *Aphis craccivora* at the concentration of 100 µg/mL. Interestingly, some of the target compounds possessed significant antitumor activities against four human cancer cell lines in vitro. Among them, compounds **8e** ($IC_{50} = 7.19 \mu$ M), **8I** ($IC_{50} = 6.56 \mu$ M), **8m** ($IC_{50} = 8.12 \mu$ M), and **8r** ($IC_{50} = 7.06 \mu$ M) had better inhibitory activities against HCT-116 cells than the control 5-fluorouracil ($IC_{50} = 29.50 \mu$ M). Additionally, compounds **8j**, **8m**, and **8r** showed wonderful inhibitory activities against SGC-7901 cells with the IC_{50} values of 11.46, 9.41, and **8.64** µM, respectively, which were superior to that of the control 5-fluorouracil.

© 2016 Elsevier Ltd. All rights reserved.

In the past few decades, heterocycles plays a vital role in the field of agriculture and medicine. Pyrazole is a classical nitrogencontaining heterocycle which extensively exists in natural products and non-natural products.^{1,2} Most of these pyrazole derived compounds have been investigated to possess various bioactivities such as insecticidal,³ acaricidal,^{4,5} antibacterial,^{6,7} and anticancer activities.^{8,9} Pyrazole oxime derivatives are important parts of pyrazole compounds with diverse bioactivities like insecticidal,¹⁰ fungicidal,¹¹ and anti-tobacco mosaic virus (TMV) activity.¹² For instance, Fenpyroximate (Fig. 1), a potent acaricide carrying a pyrazole oxime in the structure, is widely used in crop protection.^{13,14} Furthermore, in 2005 Park et al. also found some Fenpyroximate analogues displayed interesting antitumor activities.¹⁵ This endowed a great impetus to the study of biologically active pyrazole oxime compounds.

On the other hand, as an important five-member heterocycle, 1,2,3-thiadiazole derivatives have also attracted considerable attention due to their versatile bioactivities including fungicidal,¹⁶ insecticidal,¹⁷ and antivirus activities.¹⁸ Recently, Fan et al. reported several series of 1,2,3-thiadiazole derivatives bearing other heterocyclic ring like triazole, and so on, and some of these compounds exhibited good anti-TMV activities.^{19,20} More recently, Xu et al. synthesized a series of new 1,2,3-thiadiazoles that displaying perfect antivirus activity against TMV.²¹ Additionally,

many 1,2,3-thiadiazole containing derivatives are found to exhibit potent antiamoebic,²² and antitumor property.²³ Therefore, 1,2,3-thiadiazole-based compounds became a focus of chemical and pharmaceutical research.

Inspired by these facts, we envisioned that introduction of a substituted 1,2,3-thiadiazole ring into pyrazole oxime scaffold might produce some compounds possessing a wide spectrum bioactivities. In the present study, we describe the synthesis of a number of novel pyrazole oxime derivatives bearing a 1,2,3-thiadiazole moiety. Moreover, all the title compounds have been investigated for their biological activities containing insecticidal, acaricidal, and antitumor activities.

The synthetic route of the target compounds **8a–8t** and **10a–10c** was depicted in Scheme 1. The key intermediate 4-alkyl-5-chloromethyl-1,2,3-thiadiazole (**4**) was synthesized from compound **1**. The condensation of intermediate **1** with methyl hydrazinocarboxylate afford compound $2.^{24}$ Intermediate **2** reacted with thionyl chloride to give compound $3.^{25}$ Intermediate **3** was treated by two steps including reduction and chlorination to obtain the crucial intermediate 4-alkyl-5-chloromethyl-1,2,3-thiadiazole (**4**). Pyrazole oximes (**7**) and (**9**) were prepared from compound **5**. Intermediate **5** was condensed with sodium substituted phenol at 105 °C to afford 5-aryloxy substituted pyrazole carbaldehyde (**6**),²⁶ which then reacted with hydroxylamine hydrochloride under basic condition to produce 5-aryloxy pyrazole oximes (**7**) smoothly. Similarly, compound **5** was transformed into 5-chloropyrazole oxime (**9**) by the treatment with hydroxylamine

^{*} Corresponding authors. Tel.: +86 513 85012851.

E-mail addresses: yjshi2015@163.com (Y. Shi), yling2015@aliyun.com (Y. Ling).

Target Compounds

Figure 1. Design of target compounds.

Scheme 1. Synthesis of compounds 8a–8t, 10a–10c. Reagents and conditions: (a) NH₂NHCOOCH₃, CH₃CH₂OH, rt, 10 h; (b) SOCl₂, CH₂Cl₂, 0 °C to rt, 24 h; (c) (i) NaBH₄, I₂, CH₃OH, 0 °C to rt, 3 h; (ii) SOCl₂, reflux, 30 min; (d) sodium substituted phenol, DMSO, 105 °C, 8–18 h; (e) NH₂OH·HCl, KOH, CH₃OH, reflux, 6–17 h; (f) compound 4, K₂CO₃, CH₃CN, reflux, 7–20 h; (g) NH₂OH·HCl, KOH, CH₃CH₂OH, reflux, 8 h; (h) compound 4, K₂CO₃, CH₃CN, reflux, 10–13 h.

hydrochloride. Finally, compound **7** or **9** was admixed with 4-alkyl-5-chloromethyl-1,2,3-thiadiazole (**4**) in CH_3CN using potassium carbonate as alkali to form corresponding pyrazole oximes

containing a 1,2,3-thiadiazole moiety successfully.²⁷ The title compounds have all been confirmed by ¹H NMR, ¹³C NMR, and elemental analyses (detailed information see Supplementary data).

Download English Version:

https://daneshyari.com/en/article/1369430

Download Persian Version:

https://daneshyari.com/article/1369430

Daneshyari.com