FISEVIER

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Multisubstituted quinoxalines and pyrido[2,3-d]pyrimidines: Synthesis and SAR study as tyrosine kinase c-Met inhibitors

Kui Wu ^{a,†}, Jing Ai ^{b,†}, Qiufeng Liu ^{c,†}, TianTian Chen ^c, Ailing Zhao ^d, Xia Peng ^b, Yuanxiang Wang ^d, Yinchun Ji ^b, Qizheng Yao ^{a,*}, Yechun Xu ^{c,*}, Meiyu Geng ^{b,*}, Ao Zhang ^{d,*}

ARTICLE INFO

Article history: Received 9 July 2012 Revised 7 August 2012 Accepted 20 August 2012 Available online 27 August 2012

Keywords: c-Met kinase 3,5-Diamino-7-trifluoroquinoline hERG Antitumor activity Structure-activity relationship (SAR)

ABSTRACT

Two series of new analogues were designed by replacing the quinoline scaffold of our earlier lead 2 (zgwatinib) with quinoxaline and pyrido[2,3-d]pyrimidine frameworks. Moderate c-Met inhibitory activity was observed in the quinoxaline series. Among the pyrido[2,3-d]pyrimidine series, compounds 13a-c possessing an O-linkage were inactive, whilst the N-linked analogues 15a-c retained c-Met inhibitory potency. Highest activity was observed in the 3-nitrobenzyl analog 15b that showed an $1C_{50}$ value of 6.5 nM. Further structural modifications based on this compound were undergoing.

© 2012 Elsevier Ltd. All rights reserved.

Similar to most of the receptor tyrosine kinases (RTK), the hepatocyte growth factor (HGF) c-Met is a regulator of many critical cellular processes including embryological development, cell growth, differentiation, neovascularization and tissue regeneration.^{1,2} Aberrantly high expression of HGF/c-Met has been implicated in a variety of solid tumors.^{3–9} Therefore, c-Met has emerged as an attractive molecular target and inhibition of HGF/ c-Met signaling pathway has shown great therapeutic benefit as novel cancer therapy. 10-15 Among the large number of c-Met-targeting small molecules reported recently, ^{16–18} crizotinib (**1**, PF-02 341066, Fig. 1) has been the only one approved by FDA as a firstin-class c-Met inhibitor antitumor drug. However, this drug is indeed a dual inhibitor with equal potency at both c-Met and ALK (anaplastic lymphoma kinase) kinases. 19 Therefore, a direct correlation between the clinical anti-cancer benefit and the c-Met potency is dampened by the polypharmacy profile, and highly selective and potent c-Met inhibitors are emergently needed as probes to validate clinical efficacy of the c-Met targeting strategy.

We recently reported 20,21 a series of highly potent c-Met inhibitors structurally featured by multisubstituted quinolines. One of these compounds, 3-(4-methylpiperazin-1-yl)-N-(3-nitrobenzyl)-7-(trifluoromethyl)quinolin-5-amine (2) 20 , also named zgwatinib (Fig. 1), displayed high c-Met potency both at enzymatic (0.93 nM) and cellular (230 nM) levels, thereafter was selected for earlier preclinical investigations. Meanwhile, a series of triazolo[4,3-b]pyridazine analogues were designed 21 by merging the 3-piperazinyl-7-trifluoromethylquinoline core of 2^{20} and the triazolopyridazine core of 3, 15 another potent c-Met inhibitor reported by Amgen, into one molecule to improve the memberane permeability and then eradicate the discrepancy between the enzymatic and cellur potency of 2 (Fig. 2). Unfortunately, these new triazolo[4,3-b]pyridazin-3-ylmethanamines 4^{21} showed much reduced inhibitory effects to c-Met enzyme.

As a continuation of our study toward the identification of potent c-Met inhibitors, we decided to take advantage of the widely-used quinoxazoline skeleton as a privileged scaffold of RTK inhibitors and modifiy it with the three key substutients of compound 4 or lead 2, thereby designing a new series of quinoxaline analogues I (Fig. 2). Meanwhile, replacement of the quinoline core 2 with a pyrido[2,3-d]pyrimidine artwork and concurrent incorporation of the two side chains of 1 led to another series of new analogues II (Fig. 2). Herein, in this report we disclose the synthesis and c-Met inhibition study of these two series of new analogues.

^a Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China

b Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

^c Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

d Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

 $[\]ast$ Corresponding authors. Tel.: +86 21 50801267; fax: +86 21 50807188 (Y.X.); tel./fax: +86 21 50806072 (M.G.); tel./fax: +86 21 50806035 (A.Z.).

E-mail addresses: qz_yao@yahoo.com.cn (Q. Yao), ycxu@mail.shcnc.ac.cn (Y. Xu), mygeng@mail.shcnc.ac.cn (M. Geng), aozhang@mail.shcnc.ac.cn (A. Zhang).

 $^{^\}dagger$ These authors contributed equally to this work.

Figure 1. Marketed c-Met inhibitor 1 and our earlier reported compound 2.

$$\begin{array}{c} \textbf{NO}_2 \\ \textbf{NO}_2 \\ \textbf{2} \ (\text{our lead compound}) \\ \text{(c-Met Enzyme: } | \textbf{C}_{50} = 0.93 \ \text{nM} \\ \textbf{Cell: } \textbf{K}_i = 230 \ \text{nM}) \\ \textbf{(Wang Y: JMC-2011-54-2127)} \\ \textbf{Our current design} \\ \textbf{I, quinoxaline series} \\ \textbf{II, pyrido}[\textbf{2},\textbf{3-d}] \text{pyrimidine series} \\ \textbf{III} \\ \textbf{Park of the part of the$$

Figure 2. Our new compounds design.

Scheme 1. Synthesis of compounds **8a-j** and **9a-e** (Series **I**).

The synthesis of compound series I was started from 3-chloro-5-bromo-7-trifluoromethylquinoxaline (5)²² which was prepared by following a literature procedure. As described in Scheme 1, treatment of 5 with variant amines provided 3-amino-quinoxalines 6a-f in 88-95% yields. Pd₂(dba)₃-catalyzed *C-N* coupling²⁰ of 6a with (6-substituted-[1,2,4]triazolo[4,3-b]pyridazin-3-yl)methanamines 7a-j afforded 8a-j in 64-82% yields. Meanwhile, coupling of 4-fluorophenyl substituted [1,2,4]triazolo[4,3-b]pyridazin-3-ylmethanamine 7g with bromides 6b-f yielded N-substituted piperazines 9a-e in 65-80% yields.

Table 1 c-Met activity of compounds **8a-j**^a

Compd	R'	IC_{50}^{a} (nM)
8a	Н	2500 ± 67.0
8b	MeO	2700 ± 317
8c	2-Thienyl	659 ± 129
8d	3-Thienyl	441 ± 52.5
8e	2-Furyl	409 ± 183
8f	Ph	1980 ± 328
8g	4-F-Ph	626 ± 97.2
8h	3-F-Ph	385 ± 84.7
8i	3-Cl-Ph	257 ± 40.3
8j	1-Me-pyrazol-4-yl	924 ± 179
2^{20}	_	0.93 ± 0.18
4 ²¹	R=R'=H	330

 $^{^{\}rm a}$ In vitro kinase assays were performed with the indicated purified recombinant c-Met kinase domains, IC $_{50}{\rm s}$ were calculated by Logit method from the results of at least three independent tests with six concentrations each.

Download English Version:

https://daneshyari.com/en/article/1369455

Download Persian Version:

https://daneshyari.com/article/1369455

<u>Daneshyari.com</u>