

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis, characterization and biological evaluation of some novel 2,4-thiazolidinediones as potential cytotoxic, antimicrobial and antihyperglycemic agents

Vasudeva Rao Avupati ^{a,*}, Rajendra Prasad Yejella ^a, Annapurna Akula ^b, Girija Sankar Guntuku ^c, Bhagya Raju Doddi ^a, Venkata Rao Vutla ^a, Suvarna Ratna Anagani ^a, Lakshmana Santhi Adimulam ^a, Aruna Kumar Vyricharla ^a

ARTICLE INFO

Article history: Received 25 June 2012 Revised 13 July 2012 Accepted 14 August 2012 Available online 21 August 2012

Keywords: 2,4-Thiazolidinediones Brine Shrimp Lethality assay Agar well diffusion assay Antihyperglycemic activity Molecular docking

ABSTRACT

A series of some novel 2,4-thiazolidinediones (TZDs) (2a-x) have been synthesized and characterized by FTIR. ¹H NMR. ¹³C NMR and LC mass spectral analysis. All the synthesized compounds were evaluated for their cytotoxicity, antimicrobial and in vivo antihyperglycemic activities. Among the tested compounds for cytotoxicity using Brine Shrimp Lethality assay, compound 2t ((Z)-5-(4-((E)-3-oxo-3-(thiophen-2vl)prop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-dione) exhibited significant inhibitory activity at ED₅₀ value 4.00 ± 0.25 µg/mL and this level of activity was comparable to that of the reference drug podophyllotoxin with ED_{50} value 3.61 \pm 0.17 μ g/mL. Antimicrobial activity was screened using agar well diffusion assay method against selected Gram-positive, Gram-negative and fungal strains and the activity expressed as the minimum inhibitory concentration (MIC) in µg/mL. From the results of antimicrobial activity compound 2s ((Z)-5-(4-((E)-3-(3,5-bis(benzyloxy)phenyl)-3-oxoprop-1-enyl)benzylidene)-1,3thiazolidine-2,4-dione) was found to be the most active against all the tested strains of microorganisms with MIC value 16 μg/mL. In vivo antihyperglycemic effect of twenty four TZDs (2a-x) at different doses 10, 30 and 50 mg/kg b.w (oral) were assessed using percentage reduction of plasma glucose (PG) levels in streptozotocin-induced type II diabetic rat models. From the results, the novel compound 2x ((Z)-5-(4-((E)-3-(9H-fluoren-2-vl)-3-oxoprop-1-envl)benzylidene)-1.3-thiazolidine-2.4-dione) exhibited considerably potent blood glucose lowering activity than that of the standard drug rosiglitazone and it could be a remarkable starting point to evaluate structure-activity relationships and to develop new lead molecules with potential cytotoxicity, antimicrobial and antihyperglycemic activities. In addition molecular docking studies were carried out against PPARy molecular target using Molegro Virtual Docker v 4.0 to accomplish preliminary confirmation of the observed in vivo antihyperglycemic activity.

© 2012 Elsevier Ltd. All rights reserved.

In recent years, the chemistry of 2,4-thiazolidinediones (TZDs) captivated importance as these compounds have been found to exhibit several biological activities, such as antihyperglycemic, euglycemic, anti-inflammatory, antimalarial, antioxidant, antitumor, cytotoxic, antimicrobial, antiproliferative, PPAR γ agonist, dual PPAR α/γ activator, free radical scavenger, LDL oxidation inhibitor, glycogen synthase kinase (GSK) 3 inhibitor, aldose reductase inhibitor, cholesterol esterase inhibitor, human β_3 agonist, chymase inhibitor, bacterial arylamine N-Acetyltransferases (NATs) inhibitor, P2X $_7$ receptor antagonist, antiproliferative, been found to exhibit the sample of the second support o

thyroid hormone receptor antagonist, ²² PTP1B inhibitor, ²³ human PTP1B and LMW-PTP inhibitor, ²⁴ Raf/MEK/Extracellular signal regulated kinase (ERK1/2) inhibitor, ²⁵ dual inhibitor of the Raf/MEK/ERK and the PI3K/Akt signaling pathways, ²⁶ serine/threonine protein kinases Pim-1 and Pim-2 inhibitor, ²⁷ G-protein coupled receptor 40 (GPR40) agonist, ²⁸ MurD ligase inhibitor, ²⁹ monoamine oxidase B (MAO-B) inhibitor ³⁰ and neuroprotective. ³¹ Having such diverse range of pharmacological activities, these molecules have attracted medicinal chemists and consequently a number of strategies have been originated to synthesize them.

A series of TZDs (2a–x) synthesized in the present study were studied for their cytotoxicity, antimicrobial and antihyperglycemic activities. In fact, compounds having α , β -unsaturated ketone or 1,3-thiazolidine-2,4-dione moieties were earlier reported to

^a Pharmaceutical Chemistry Division, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India

b Pharmacology Division, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India

c Pharmaceutical Biotechnology Division, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India

^{*} Corresponding author. Tel.: +91 9030805658.

E-mail address: vasudevaraoavupati@gmail.com (V.R. Avupati).

possess cytotoxicity^{32–39}, antimicrobial^{40–47} and antihyperglycemic^{48–55} activities and thus the synthesized compounds now are expected to possess synergistic effect, as both the features form part of these molecules. In the present investigation, the aim of molecular docking study of a series of TZDs (2a–x) against PPAR γ (PDB ID: 3CS8) is to predict and compare the ligand conformation and orientation within a targeted binding site. To the best of our knowledge there is, to date, no report was published regarding the binding properties of TZDs (2a–x) against PPAR γ 3CS8 Ligand Binding Domain (LBD).

The reaction sequence employed for the synthesis of title compounds (**2a-x**) is shown in Scheme 1, and their physical properties are depicted in Table 1. As described by Momose et al. ⁵⁶ and Bruno et al. ⁵⁷ 2,4-thiazolidinedione can undergo a Knoevenagel condensation with a variety of substituted aldehydes to produce 5-arylidene-2,4-thiazolidinediones. The key intermediate in the present study (*Z*)-4-((2,4-dioxo-1,3-thiazolidin-5-ylidene)methyl)benzaldehyde **1** was prepared by Knoevenagel condensation reaction between terephthaldehyde and 1,3-thiazolidine-2,4-dione. Further, subsequent base catalyzed condensation of the **1** with appropriate substituted aromatic/heteroaromatic ketones in the presence of pulverized sodium hydroxide in boiling dimethylformamide (DMF) afforded a series of 2,4-thiazolidinediones (**2a-x**) in good yield. ^{58,59}

All the synthesized compounds as mentioned in Table 1 were characterized by CHN elemental analysis and spectroscopic methods such as FTIR, ¹H NMR, ¹³C NMR and LC mass spectral analysis. The IR spectrum of **1** exhibited characteristic –C=C– (aliphatic)

and -C=C- (aromatic) stretching bands at frequencies 1685 cm $^{-1}$ and 1598 cm $^{-1}$, respectively. The 1 H NMR spectrum of $\mathbf{1}$ revealed characteristic peaks of 5-benzylidene (HC=C) and NH protons as two singlets, one at δ 7.86 ppm and the other one at δ 12.74 ppm (broad) providing evidence for formation of $\mathbf{1}$ and reconfirmed by the 13 C NMR peaks at δ 126.78 ppm and δ 115.14 ppm due to 5-methylidene carbon and carbon (C₅) of 1,3-thiazolidine-2,4-dione. The ESI mass spectrum (positive ion mode) of $\mathbf{1}$ revealed a (M+H) $^{+}$ ion at m/z 234. The geometry of all TZDs ($\mathbf{2a}$ - \mathbf{x}) were assumed to be (Z) configuration because of its high degree of thermal stability of this isomer. 60

The IR spectrum of all the compounds (2a-x) exhibited the characteristic absorptions at various frequencies correspondingly at 3300-3100 cm⁻¹ and 1650-1735 cm⁻¹ suggesting the presence of a secondary amine group and $\alpha.\beta$ -unsaturated carbonyl group. respectively. In the ¹H NMR spectra of TZDs (2a-x), a singlet integrating for one proton characteristic of the HC=C group was observed in between δ 7.72–8.10 ppm and a singlet integrating for one proton of the NH group was observed in between δ 12.5-13.5 ppm as a broad signal. The ¹H NMR spectrum of the compound **2a** exhibited characteristic peaks of H- α and H- β protons of α,β -unsaturated carbonyl group as two doublets, one at δ 8.01 ppm (H- β , I = 15.2 Hz) and the other one at δ 7.78 ppm (H- α , I = 15.2 Hz). The large I value clearly reveals the trans geometry at the double bond. In the ¹³C NMR spectra, the presence of characteristic signals correspondingly at δ 123.36 ppm and δ 142.76 ppm indicating the presence of $C-\alpha$ and $C-\beta$ carbon atoms of α,β -unsaturated carbonyl group confirmed the formation of

Scheme 1. Reagents and conditions: (i) Piperidine, ethanol, reflux, 8 h; (ii) dry dimethylformamide (DMF), pulverized NaOH, substituted aromatic/heteroaromatic ketones.

Table 1Physical characterization and cytotoxicity data of TZDs (**2a-x**) produced via Scheme 1

Compound	R	Yield ^a (%)	Molecular weight	Molecular formula	Mp (°C)	ED ₅₀ (μg/mL) (mean ± SEM)
2a	C ₆ H ₅	88	335.58	C ₁₉ H ₁₃ NO ₃ S	212-215	44.73 ± 0.12
2b	4-MeC ₆ H ₄	84	349.40	$C_{20}H_{15}NO_3S$	179-182	19.66 ± 0.25
2c	3-OMeC ₆ H ₄	83	365.40	$C_{20}H_{15}NO_4S$	181-184	18.72 ± 0.15
2d	4-OMeC ₆ H ₄	91	365.40	$C_{20}H_{15}NO_4S$	218-221	16.24 ± 0.52
2e	2-OHC ₆ H ₄	91	351.38	$C_{19}H_{13}NO_4S$	189-192	41.35 ± 0.33
2f	$4-OHC_6H_4$	87	351.38	$C_{19}H_{13}NO_4S$	206-209	36.20 ± 0.23
2g	2,4-diOHC ₆ H ₃	83	367.38	$C_{19}H_{13}NO_5S$	215-218	49.21 ± 0.25
2h	2,5-diOHC ₆ H ₃	83	367.38	$C_{19}H_{13}NO_5S$	213-216	46.71 ± 0.15
2i	$2-OH,5-MeC_6H_3$	90	365.07	$C_{20}H_{15}NO_4S$	125-128	39.42 ± 0.52
2j	6-OH, 5 -MeC ₆ H ₃	81	365.07	$C_{20}H_{15}NO_4S$	221-224	33.12 ± 0.21
2k	3-NH2C6H4	81	350.07	$C_{19}H_{14}N_2O_3S$	211-214	33.18 ± 0.15
21	4-NH2C6H4	80	350.07	$C_{19}H_{14}N_2O_3S$	231-234	28.82 ± 0.12
2m	3-NO ₂ C ₆ H ₄	86	380.05	C ₁₉ H ₁₂ N ₂ O ₅ S	255-258	56.06 ± 0.25
2n	$4-NO_2C_6H_4$	84	380.05	$C_{19}H_{12}N_2O_5S$	217-220	49.28 ± 0.15
20	3-ClC ₆ H ₄	92	369.82	$C_{19}H_{12}CINO_3S$	219-222	24.82 ± 0.12
2p	4-ClC ₆ H ₄	90	369.82	$C_{19}H_{12}CINO_3S$	206-209	12.06 ± 0.25
2q	3-FC ₆ H ₄	93	353.05	$C_{19}H_{12}FNO_3S$	212-215	9.28 ± 0.15
2r	$4-FC_6H_4$	89	353.05	$C_{19}H_{12}FNO_3S$	199-203	4.32 ± 0.52
2s	$3,5-diC_7H_7OC_6H_3$	94	547.62	$C_{33}H_{25}NO_5S$	229-233	26.82 ± 0.12
2t	Thiophen-2-yl	88	341.40	$C_{17}H_{11}NO_3S_2$	207-210	4.00 ± 0.25
2u	Pyridin-2-yl	87	336.06	$C_{18}H_{12}N_2O_3S$	194-197	30.28 ± 0.15
2v	Pyridin-3-yl	84	336.06	C ₁₈ H ₁₂ N ₂ O ₃ S	205-208	31.42 ± 0.52
2w	Naphthalen-2-yl	81	385.08	C ₂₃ H ₁₅ NO ₃ S	216-219	48.11 ± 0.33
2x	Fluoren-2-yl	79	423.48	C ₂₆ H ₁₇ NO ₃ S	218-221	39.66 ± 0.31
Standard ^b	_	_	_	-	_	3.61 ± 0.17

^a Crystallization solvent is ethanol.

^b Podophyllotoxin.

Download English Version:

https://daneshyari.com/en/article/1369470

Download Persian Version:

https://daneshyari.com/article/1369470

<u>Daneshyari.com</u>