Bioorganic & Medicinal Chemistry Letters 26 (2016) 3060-3063

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

New anti-inflammatory sterols from a gorgonian *Pinnigorgia* sp. _____

Yin-Di Su^{a,b,†}, Ching-Hsiao Cheng^{c,†}, Zhi-Hong Wen^a, Yang-Chang Wu^{d,e,f,g,*}, Ping-Jyun Sung^{a,b,e,g,h,*}

^a Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan

^b National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan

^c Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan

^d School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan ^e Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan

^fCenter for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan

^gGraduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan

^h Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan

Graduate institute of marine biology, National Dong rive Oniversity, Finglang 344, Taiwa

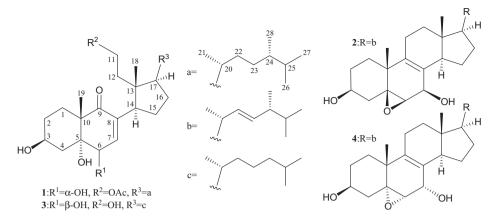
ARTICLE INFO

Article history: Received 8 February 2016 Revised 16 April 2016 Accepted 4 May 2016 Available online 10 May 2016

Keywords: Pinnigorgia Gorgonian Sterol Anti-inflammatory activity iNOS COX-2 ABSTRACT

Chemical investigation on the EtOAc-soluble fraction from the MeOH/DCM extract of a gorgonian *Pinnigorgia* sp. afforded two new sterols, 11-acetoxy-24S-methyl- 3β , 5α , 6α -trihydroxy-9,11-secocholest-7-en-9-one (**1**) and 5β , 6β -epoxy-(22*E*,24*R*)-ergosta-8,22-diene- 3β , 7β -diol (**2**). The structures of sterols **1** and **2** were elucidated on the basis of spectroscopic analysis and by comparison of their spectroscopic data with those of related analogues. Both **1** and **2** were shown to significantly inhibit the accumulation of the pro-inflammatory iNOS and COX-2 protein in LPS-stimulated RAW264.7 macrophage cells.

© 2016 Elsevier Ltd. All rights reserved.


Studies on the chemical constituents of octocorals collected off the waters of Taiwan have led to the isolation of various 9,11secosterols from *Cespitularia*,¹ *Cladiella*,² and *Sinularia* spp,^{3–6} Sterols of this type were found to possess interesting bioactivities, such as cytotoxic,^{1–6} anti-inflammatory,³ and antiviral activities.^{5,6} In our continuing investigation of bioactive natural substances from Formosan marine invertebrates, two new sterols, 11acetoxy-24S-methyl-3 β ,5 α ,6 α -trihydroxy-9,11-secocholest-7-en-9one (1) and 5 β ,6 β -epoxy-(22*E*,24*R*)-ergosta-8,22-diene-3 β ,7 β -diol (2), were obtained from *Pinnigorgia* sp. (family Gorgoniidae) (Fig. 1). We report herein the isolation, structural elucidation, and anti-inflammatory activity of sterols 1 and 2.

11-Acetoxy-24*S*-methyl-3*β*,5*α*,6*α*-trihydroxy-9,11-secocholest-7-en-9-one (**1**) was isolated as colorless oil. HRESIMS of **1** exhibited a pseudo molecular peak at m/z 529.35023 [M+Na]⁺ (calcd for C₃₀H₅₀O₆ + Na, 529.34996) and established a molecular formula of C₃₀H₅₀O₆, indicating six degrees of unsaturation. The presence of hydroxy, ester, and *α*,*β*-unsaturated ketone groups were suggested by absorptions at 3394, 1740, and 1678 cm⁻¹ in the IR spectrum. The ¹³C NMR and DEPT spectroscopic data of **1** (Table 1) showed the presence of 30 carbon atoms, including seven methyls, nine sp³ methylenes, seven sp³ methines, one sp² methine, three sp³ quaternary carbons, and three sp² quaternary carbons. The ketonic carbonyl signal at $\delta_{\rm C}$ 202.1 combined with the chemical shifts of H₃-18 ($\delta_{\rm H}$ 0.70, 3H, s), H₃-19 ($\delta_{\rm H}$ 1.24, 3H, s), H₃-21 $(\delta_{\rm H} 0.98, 3H, d, J = 6.8 \text{ Hz}), \text{ H-3} (\delta_{\rm H} 3.99, 1H, m), \text{ H-6} (\delta_{\rm H} 4.45, 1H, m)$ br s), H-7 ($\delta_{\rm H}$ 6.24, 1H, d, I = 1.6 Hz), and H₂-11 ($\delta_{\rm H}$ 4.14, 2H, m) were found to be similar to those of 3,5,6-trihydroxy-9,11seco-7-en-9-one sterol analogues.^{7,8} Moreover, the signals appearing at δ_{C} 66.8 (CH), 79.4 (C), 70.8 (CH), 140.6 (CH), 137.7 (C), 202.1 (C), and 61.5 (CH₂) indicated the presence of functional groups of three hydroxy, one α,β -unsaturated ketone, and one acetoxymethylene in **1**. From the ${}^{1}H-{}^{1}H$ COSY spectrum of **1**, the proton sequences from H₂-1/H₂-2/H-3/H₂-4, H-6/H-7, H₂-11/ H2-12, H-14/H2-15/H2-16/H-17/ H-20/H2-22/H2-23/H-24/H-25/ H₃-26, H-20/H₃-21, H-24/H₃-28, and H-25/H₃-27 (Fig. 2) were established. These data, together with the key HMBC correlations between H₂-1/C-10; H₂-4/C-5, -10; H-7/C-5, -9; H₂-11/C-13; H₂-12/C-13; H-14/C-7, -8, -9, -13; H₂-16/C-13; H₃-18/C-12, -13, -14, -17; and H₃-19/C-1, -5, -9, -10, permitted the elucidation of the main carbon skeleton of 1 (Fig. 2). An HMBC correlation

^{*} Corresponding authors. Tel.: +886 4 220 57513; fax: +886 4 220 60248 (Y.-C.W.); tel.: +886 8 882 5037; fax: +886 8 882 5087 (P.-J.S.).

E-mail addresses: yachwu@mail.cmu.edu.tw (Y.-C. Wu), pjsung@nmmba.gov.tw (P.-J. Sung).

[†] These authors contributed equally to this work.

Figure 1. The structures of 11-acetoxy-24S-methyl-3 β , 5 α , 6 α -trihydroxy-9,11-secocholest-7-en-9-one (1), 5 β , 6 β -epoxy-(22*E*,24*R*)-ergosta-8,22-diene-3 β , 7 β -diol (2), 3 β , 5 α , 6 β , 11-tetrahydroxy-9,11-secocholest-7-en-9-one (aplidiasterol B) (3), and 5 α , 6 α -epoxy-(22*E*,24*R*)-ergosta-8,22-diene-3 β , 7 α -diol (4).

between H₂-11 ($\delta_{\rm H}$ 4.14) and the acetate carbonyl ($\delta_{\rm C}$ 171.2) revealed the presence of an acetate ester at C-11. By comparison of NMR data with those of a known sterol, 3β , 5α , 6β ,11-tetrahydroxy-9,11-secocholest-7-en-9-one (aplidiasterol B) (**3**),⁷ the planar structure of **1** was established.

The stereochemistry of **1** was elucidated from the correlations observed in the NOESY experiment and by comparison of NMR data with those of sterol **3**. The configurations at C-3, C-5, C-10, C-13, C-14, C-17, and C-20 in **1** were found to be the same as those of **3**. Key NOE correlations for **1** showed interactions between H-3/H-4 α ($\delta_{\rm H}$ 2.22) and H-6/H₃-19. Thus, H-3 and H-6 should be positioned on the α - and β -face, respectively (Fig. 3). The configuration of stereogenic center at C-24 was assigned as *S* on the basis

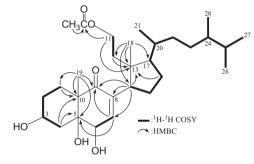


Figure 2. The ¹H-¹H COSY and key HMBC correlations of 1.

Table 1NMR data for sterols 1 and 2

Position	1		2	
	$\delta_{\rm H} (J \text{ in Hz})^{\rm a}$	$\delta_{\rm C}$, Mult. ^b	$\delta_{\rm H} (J \text{ in Hz})^{\rm a}$	$\delta_{\rm C}$, Mult. ^b
1	2.05 m; 1.71 m	27.2, CH ₂	1.80 m; 1.62 m	30.2, CH ₂
2 3	1.96 m; 1.45 m	30.1, CH ₂	2.01 m; 1.61 m	30.9, CH ₂
3	3.99 m	66.8, CH	3.96 m	68.6, CH
$4\alpha/\beta$	2.22 ddd (13.6, 4.8, 1.6); 1.60 m	38.5, CH ₂	1.46 m; 2.19 dd (12.4, 11.6)	39.2, CH ₂
5		79.4, C		65.6, C
6	4.45 br s	70.8, CH	3.31 d (2.4)	62.5, CH
7	6.24 d (1.6)	140.6, CH	4.22 br d (10.8)	67.1, CH
8		137.7, C		126.9, C
9		202.1, C		134.5, C
10		49.3, C		38.0, C
11	4.14 m	61.5, CH ₂	2.08 m	23.8, CH ₂
12	1.63 m; 1.27 m	37.1, CH ₂	1.96 m; 1.42 m	35.7, CH ₂
13		46.1, C		42.1, C
14	3.22 dd (10.0, 10.0)	43.5, CH	2.19 dd (12.4, 11.6)	49.6, CH
15	1.66 m	26.7, CH ₂	1.83 m; 1.30 m	29.0, CH ₂
16	1.84 m; 1.41 m	26.0, CH ₂	1.26 m; 1.14 m	23.4, CH ₂
17	1.67 m	50.4, CH	1.19 m	53.7, CH
18	0.70 s	17.2, CH ₃	0.59 s	11.3, CH ₃
19	1.24 s	19.7, CH ₃	1.14 s	22.8, CH ₃
20	1.40 m	35.1, CH	2.04 m	40.4, CH
21	0.98 d (6.8)	19.2, CH ₃	1.02 d (6.4)	20.9, CH ₃
22	1.43 m; 0.95 m	33.0, CH ₂	5.13 dd (15.2, 5.2)	135.5, CH
23	1.51 m; 0.95 m	31.4, CH ₂	5.22 dd (15.2, 8.0)	132.0, CH
24	1.22 m	39.1, CH	1.84 m	42.8, CH
25	1.57 m	31.5, CH	1.48 m	33.1, CH
26	0.79 d (6.8)	17.6, CH ₃	0.84 d (6.4)	19.9, CH ₃
27	0.86 d (6.8)	20.5, CH ₃	0.82 d (6.8)	19.6, CH ₃
28	0.78 d (6.8)	15.4, CH ₃	0.91 d (6.8)	17.6, CH ₃
11-OAc		171.2, C		
	2.01 s	21.2, CH ₃		
7-OH		. 2	1.76 d (10.8)	

^a Spectra recorded at 400 MHz in CDCl₃ at 25 °C.

^b Spectra recorded at 100 MHz in CDCl₃ at 25 °C.

Download English Version:

https://daneshyari.com/en/article/1369853

Download Persian Version:

https://daneshyari.com/article/1369853

Daneshyari.com