FISEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and preliminary evaluation of 5,7-dimethyl-2-aryl-3*H*-pyrrolizin-3-ones as angiogenesis inhibitors

Nicholas S. Kirk ^a, Anna Bezos ^b, Anthony C. Willis ^c, Pichit Sudta ^{d,e}, Sunit Suksamrarn ^e, Christopher R. Parish ^b, Marie Ranson ^f, Michael J. Kelso ^{a,*}

- ^a Illawarra Health and Medical Research Institute, School of Chemistry, University of Wollongong, NSW 2522, Australia
- ^b Cancer and Vascular Biology Group, Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra ACT 2601, Australia
- ^c Single Crystal X-ray Diffraction Unit, Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
- ^d Division of Chemistry, Phetchaburi Rajabhat University, Phetchaburi 76000, Thailand
- e Department of Chemistry, Sringkharinwirot University, Bangkok 10110, Thailand
- f Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, NSW 2522, Australia

ARTICLE INFO

Article history: Received 9 December 2015 Revised 10 February 2016 Accepted 13 February 2016 Available online 15 February 2016

Keywords: Angiogenesis inhibitor Knoevenagel 3H-Pyrrolizin-3-one Semaxanib SU5416 Sunitinib

ABSTRACT

Sunitinib (Sutent®) is a receptor tyrosine kinase (RTK) and angiogenesis inhibitor approved for the treatment of renal cell carcinomas, gastrointestinal stromal tumours and pancreatic neuroendocrine tumours. A key structural motif retained throughout medicinal chemistry efforts during sunitinib's development was the indoline-2-one group. In the search for new anti-angiogenic scaffolds, we previously reported that non-indoline-2-one-based derivatives of semaxanib (SU5416, a structurally simpler sunitinib predecessor that underwent Phase III trials) are active as angiogenesis inhibitors, indicating that the group is not essential for activity. This Letter describes the synthesis and structure-activity relationships of another class of non-indoline-2-one angiogenesis inhibitors related to sunitinib/semaxanib; the 5,7dimethyl-2-aryl-3H-pyrrolizin-3-ones. A focussed library of 19 analogues was prepared using a simple novel process, wherein commercially available substituted arylacetic acids activated with an amide coupling reagent (HBTU) were reacted with the potassium salt of 3,5-dimethyl-1H-pyrrole-2-carbaldehyde in one-pot. Screening of the library using a cell-based endothelial tube formation assay identified 6 compounds with anti-angiogenesis activity. Two of the compounds were advanced to the more physiologically relevant rat aortic ring assay, where they showed similar inhibitory effects to semaxanib at 10 μg/mL, confirming that 5,7-dimethyl-2-aryl-3H-pyrrolizin-3-ones represent a new class of angiogenesis inhibitors.

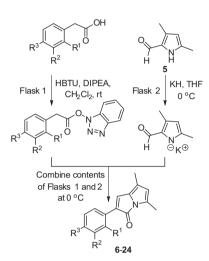
© 2016 Elsevier Ltd. All rights reserved.

Sunitinib 1 (Sutent®, Pfizer, Fig. 1)¹ is an indolin-2-one-based angiogenesis inhibitor approved for the treatment of vascularised renal cell carcinomas,² gastrointestinal stromal tumours³ and pancreatic neuroendocrine tumours.⁴ Its mechanism of action involves inhibition of at least eight different receptor tyrosine kinases (RTKs), including vascular endothelial growth factor receptors 1–3 (VEGFR1–VEGFR3), platelet-derived growth factor receptors

Abbreviations: HBTU, 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; CSF-1R, colony-stimulating factor-1 receptor; DIPEA, N,N-diisopropylethylamine; FLT-3, Fms-like tyrosine kinase 3; FOV, field of view; HUVEC, human umbilical vein endothelial cell; PDGFR, platelet-derived growth factor receptor; RTK, receptor tyrosine kinase; THF, tetrahydrofuran; VEGFR, vascular endothelial growth factor receptor.

(PDGFRs) α and β, stem cell factor receptor (Kit), Fms-like tyrosine kinase 3 (FLT-3) and colony-stimulating factor-1 receptor (CSF-1R). The indolin-2-one (oxindole) portion was considered crucial for activity of sunitinib 1 and was retained throughout development. Indeed, the structurally simpler indolin-2-one predecessor semaxanib (SU5416) 2 underwent a Phase III clinical trial for advanced colorectal cancer. In recent work, we showed that in spite of its perceived importance the indolin-2-one moiety is not essential for anti-angiogenic activity in this class, demonstrating that ring-opened 3,5-dimethyl-1H-pyrrol-2-yl-2-arylacrylate 3 variants of semaxanib 2 inhibit angiogenesis in a rat aortic ring model. We now report the discovery of a second class of non-indolin-2-one-based angiogenesis inhibitors related to sunitinib 1/semaxanib 2; the 5,7-dimethyl-2-aryl-3H-pyrrolizin-3-ones 4 (Fig. 1).

^{*} Corresponding author. Tel.: +61 2 4221 5085; fax: +61 2 4221 4287. E-mail address: mkelso@uow.edu.au (M.J. Kelso).


Figure 1. Angiogenesis inhibitors related to sunitinib 1.

We hypothesised that 5,7-dimethyl-2-aryl-3*H*-pyrrolizin-3-ones might possess anti-angiogenic properties due to their structural similarity to sunitinib **1**, SU5416 **2** and acrylates **3**. The hypothesis was tested by developing new chemistry to create a small library of analogues carrying systematic variations at the 2-aryl ring and investigating their structure-activity relationships (SAR). Sporadic reports of 3*H*-pyrrolizin-3-ones have appeared in the literature but little remains known about their chemistry and biological activity.⁸⁻¹³ Complex structures incorporating a 3*H*-pyrrolizin-3-one-type core have been reported, including tricyclic pyrrolo-indolones, pyrrolo-isoindolones, tetracyclic isoindolo-indolones and other polycyclic heterocycles.^{14,15} A number of these are marine natural products or their derivatives.¹⁶

Divergent access to 5,7-dimethyl-2-aryl-3*H*-pyrrolizin-3-ones appeared achievable in one-pot from 3,5-dimethyl-1H-pyrrole-2carbaldehyde 5 and the many commercially available substituted phenylacetic acids. We had previously shown that the K⁺ salt of **5** (generated using KH in THF) is smoothly *N*-acylated by methyl chloroformate, leading us to consider that the same salt might also undergo N-acylation reactions with phenylacetic acids preactivated as acid halides or with amide coupling reagents. A simple, divergent synthesis was envisaged wherein activated phenylacetic acids generated in one flask are combined with the K⁺ salt of 5, which had been freshly prepared in a separate flask. Mixing of the flasks would initiate pyrrole N-acylation/amide formation and ensuing benzylic proton abstraction under the basic reaction conditions (excess KH) would trigger an intramolecular Knoevenagel condensation to deliver 5,7-dimethyl-2-aryl-3H-pyrrolizin-3-ones.

Preliminary synthetic efforts surveying a variety of amide coupling reagents, procedures and rates and orders of addition in model reactions with phenylacetic acid and pyrrole aldehyde $\bf 5$ yielded 5,7-dimethyl-2-phenyl-3*H*-pyrrolizin-3-one $\bf 6$ as the major product in many instances, as observed by TLC analysis. The highest yield of $\bf 6$ (48%, Scheme 1) was obtained when 1.1 mol equiv of amide coupling reagent 2-(1*H*-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and 2.0 equiv of *N*,*N*-diisopropylethylamine (DIPEA) were stirred in CH₂Cl₂ at room temperature with 1.0 equiv of phenylacetic acid to form the activated hydroxybenxzotriazoyl ester in one flask (Flask 1) and 2.0 mol equiv of KH was stirred in THF at 0 °C with 1.0 equiv of aldehyde $\bf 5$ in a separate flask (Flask 2) to generate the K⁺ pyrrolate salt. Pre-cooling Flask 1 to 0 °C and pouring its contents into Flask 2 at 0 °C in one portion completed the procedure (Scheme 1).

Employing the method with a systematic series of mono-substituted phenylacetic acid derivatives carrying F, Cl, Br, Me, OCH₃ and NO₂ groups at each of the 2'-, 3'- and 4'-positions similarly provided analogues **7–24** (Scheme 1). While the yields were low to moderate (4–48%) the simple procedure allowed rapid access to useable quantities of pure analogues for the SAR study. ¹H and ¹³C NMR data for all compounds were unambiguous and consistent with 2-aryl-3*H*-pyrrolizin-3-ones. A single crystal X-ray structure obtained for 2'-NO₂ derivative **22** further confirmed its structure

R ¹	R^2	R^3	Compound	Yield %
Н	Н	Н	6	48
F	Н	Н	7	37
Н	F	Н	8	37
Н	Н	F	9	38
CI	Н	Н	10	16
Н	CI	Н	11	35
Н	Н	CI	12	30
Br	Н	Н	13	13
Н	Br	Н	14	44
Н	Н	Br	15	34
Me	Н	Н	16	21
Н	Me	Н	17	41
Н	Н	Me	18	37
OMe	Н	Н	19	33
Н	OMe	Н	20	45
Н	Н	OM	e 21	30
NO_2	Н	Н	22	28
Н	NO_2	Н	23	15
Н	Н	NO	24	4

Scheme 1. Divergent one-pot synthesis of 5,7-dimethyl-2-aryl-3*H*-pyrrolizin-3-ones **6-24**.

(Fig. 2). The X-ray structure revealed that the 2'-nitrophenyl ring was tilted 35.5° relative to the plane of the 3*H*-pyrrolizin-3-one ring system and positioned the electron-deficient NO₂ nitrogen in close proximity to the electronegative carbonyl oxygen (2.8 Å), suggesting a favourable interaction between these two atoms.

Compounds **6–24** were screened for in vitro angiogenesis inhibitory activity at 10 μ M using the human umbilical vein endothelial cell (HUVEC)-based endothelial tube formation assay. Matrix-cultured HUVECs differentiate in response to growth factors, becoming elongated and motile and able to self-organise into capillary-like structures over a 2–12 h period. This process is disrupted in a dose-dependent manner by small molecule inhibitors of angiogenesis. Quantification of angiogenesis and the inhibitory effects

Download English Version:

https://daneshyari.com/en/article/1370028

Download Persian Version:

https://daneshyari.com/article/1370028

<u>Daneshyari.com</u>