Bioorganic & Medicinal Chemistry Letters 26 (2016) 730-733

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Bioactive lignan derivatives from the stems of Firmiana simplex

Kyeong Wan Woo^a, Won Se Suh^a, Lalita Subedi^b, Sun Yeou Kim^{b,c}, Aejung Kim^d, Kang Ro Lee^{a,a}

^a Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-ku, Suwon, Gyeonggi-do, Republic of Korea

^b College of Pharmacy, Gachon University, #191 Hambakmoe-ro, Yeonsu-gu, Incheon 406-799, Republic of Korea

^c Gachon Medical Research Institute, Gil Medical Center, Incheon, Republic of Korea

^d The Graduate School of Alternative Medicine, Kyonggi University, Seoul, Republic of Korea

ARTICLE INFO

Article history: Received 25 September 2015 Revised 28 December 2015 Accepted 5 January 2016 Available online 6 January 2016

Keywords: Firmiana simplex Sterculiaceae Lignan Anti-neuroinflammatory effect

ABSTRACT

The CHCl₃ soluble fraction of the 80% MeOH extract of the stems of *Firmiana simplex* strongly inhibited nitric oxide production in lipopolysaccharide-activated BV-2 cells. A bioactivity-guided column chromatographic separation yielded two new lignans, firmianols A and B (1–2) together with seventeen known lignans (3–19). The structural elucidation of the new compounds was determined by spectroscopic methods, including 1D, 2D NMR and HR-FAB-MS. All isolated lignans were evaluated for their antineuroinflammatory effects on nitric oxide (NO) production in lipopolysaccharides (LPS)-activated murine microglia BV2 cells. Among the isolated, compounds 14 and 15 showed potent inhibitory activity against NO production (IC₅₀ 1.05 and 0.929 μ M, respectively) without cell toxicity in murine microglia BV-2 cells. Compounds 11–13 and 17 also exhibited strong inhibitory effects on NO production, with IC₅₀ values ranging from 7.07 to 15.28 μ M.

© 2016 Elsevier Ltd. All rights reserved.

Neuroinflammation plays a central role in most neurodegenerative diseases such as Parkinson's disease, Alzheimer disease, multiple sclerosis, and stroke, and is mediated by microglial activation.¹ Microglia cells exist in the CNS and are the major targets of microgliosis following neurodegeneration.² Following microglial activation due to injury in the brain, excessive NO is produced, which initiates a cascade of neuroinflammatory responses.³ Therefore, discovering neuroprotective drugs that inhibit NO production via activated microglia is crucial in treating neurodegenerative diseases.

In our continuing search for neuroinflammatory components from Korean medicinal plants,^{4–8} the CHCl₃-soluble fraction of *Firmiana simplex* was found to strongly inhibit nitric oxide production in lipopolysaccharide-activated BV-2 cells.

F. simplex (Sterculiaceae) is a deciduous tree that is distributed in Korea and China.⁹ It is called a Chinese parasol tree, which is characterized by large stems and leaves, and is popular as an ornamental plant.¹⁰ *F. simplex* seeds have been used to treat diarrhea and stomach disorders.¹¹ Recently, Our earlier phytochemical investigation on *F. simplex* resulted in the isolation of cytotoxic triterpenes.¹² Using bioactivity-guided isolation techniques, nineteen lignan derivatives including two new lignans (**1–2**) were further isolated from the most active CHCl₃-soluble fraction (Fig. 1). In the present study, we report the isolation and structural elucidation of compounds **1–19** and their NO production activity.

Compound (1) was obtained as a colorless gum. The molecular formula of **1** was determined to be $C_{19}H_{18}O_6$ by the negative mode HR-FABMS data at m/z 341.1020 $[M-H]^-$ (calcd for $C_{19}H_{17}O_6$, 341.1020). The ¹H NMR spectrum (Table 1) of **1** showed signals of 1,3,4-trisubstitued-aromatic ring protons at δ_H 6.99 (1H, d, J = 1.5 Hz, H-2), 6.92 (1H, d, J = 7.5 Hz, H-6), and 6.81 (1H, dd, J = 7.5, 1.5 Hz, H-5), of 1,4-disubstitued-aromatic protons at δ_H 7.27 (2H, d, J = 9.0 Hz, H-2', 6') and 6.80 (2H, d, J = 9.0 Hz, H-3', 5') of dioxymethylene at 5.95 (2H, s, $-OCH_2O-$), of two oxygenated methines at 4.86 (1H, d, J = 5.5 Hz, H-7) and 4.69 (1H, s, H-7'), of four oxygenated methylenes at δ_H 4.46 (1H, t, J = 9.0 Hz, H-9a), 4.03 (1H, d, J = 9.0 Hz, H-9'a), 3.87 (1H, d, J = 9.0 Hz, H-9'b), and 3.78 (1H, dd, J = 8.5, 5.5 Hz, H-9b), of one methine proton at 3.00 (1H, dt, J = 7.5, 3.5 Hz, H-8).

The ¹³C NMR spectrum (Table 2) revealed resonances for 19 carbons attributable to twelve aromatic carbons, one dioxymethylene carbon ($\delta_{\rm C}$ 102.4), five oxygenated carbons ($\delta_{\rm C}$ 92.7, 89.2, 87.5, 76.3, and 72.1), and one methine carbons ($\delta_{\rm C}$ 62.6). The ¹H and ¹³C NMR spectra of **1** were very close to those of (+)-beechenol, which was isolated from *Zanthoxylum beecheyanum*,¹³ except that the proton and carbon signal of methine (H-8') in (+)-beechenol were absent, and instead, the resonances of oxygenated carbon at $\delta_{\rm C}$ 92.7 was present in **1**. The gross planar structure of **1** was confirmed by analysis of 2D NMR experiments (¹H–¹H COSY, HMQC, and HMBC) (Fig. 2).

CrossMark

^{*} Corresponding author. Tel.: +82 31 290 7710; fax: +82 31 290 7730. *E-mail address:* krlee@skku.edu (K.R. Lee).

Figure 1. Chemical structures of compounds 1–19 from F. simplex.

Table 1
H NMR data of compounds 1 and 2 (CD ₃ OD, 700 MHz, δ in ppm, J in Hz) ^a

Position	1		2	
	$\delta_{\rm H}$	НМВС	$\delta_{\rm H}$	HMBC
1	_		-	
2	6.99 (d, 2.0)	4, 6, 7	7.08 (d, 2.0)	4, 6, 7
3	_		_	
4	_		_	
5	6.81 (d, 9.0)	1, 3	6.80 (d, 8.0)	1, 3
6	6.92 (dd, 8.5,	2, 3, 7	6.90 (dd, 8.0,	2, 3, 7
	1.5)		2.0)	
7	4.86 (d, 5.5)	2, 6, 8, 9, 8′, 9′	4.8 (overlap)	2, 6, 8, 9, 8′, 9′
8	3.00 dt (7.5, 5.5)	1, 8′	3.07 m	1, 8′
9a	4.46 (t, 9.0)	7, 8, 7′, 8′	4.51 (t, 9.0)	7, 8, 7′, 8′
9b	3.78 (dd, 8.5,		3.81 (dd, 9.0,	
	5.5)		6.0)	
1′	_		_	
2'	7.27 (d, 9.0)	2', 3', 4', 7'	6.80 s	4', 6', 7'
3′	6.80 (d, 9.0)	1′, 3′, 4′	-	
4′	_		-	
5′	6.80 (d, 9.0)	1′, 3′, 4′	-	
6′	7.27 (d, 9.0)	2', 3', 4', 7'	6.80 s	2', 4', 7'
7′	4.69 s	8, 9, 2′, 8′, 9′	4.75 s	9, 1′, 2′, 8′, 9′
8′	_		_	
9′a	4.03 (d, 9.0)	7, 8, 7′, 8′	4.14 (d, 9.0)	7, 8, 7′, 8′
9′b	3.87 (d, 9.0)		3.91 (d, 9.0)	
1″			-	
2″			7.03 br s	4", 6", 7"
3″			-	
4″			-	
5″			6.77 (d, 8.0)	1", 3"
6″			6.82 (overlap)	2", 4", 7"
' <i>I</i> "			4.97 (d, 5.0)	1", 2", 6", 8", 9"
8″			4.24 m	4′

Table 1 (continued)

Position		1		2	
	$\delta_{\rm H}$	HMBC	$\delta_{\rm H}$	НМВС	
9″a			3.90 m	7″	
9″b			3.58 (dd, 12.	0,	
			3.5)		
3-0CH ₃			3.88 s	3	
3'-OCH ₃			3.87 s	3′	
3"-OCH ₃			3.86 s	3″	
-0CH ₂ O-	5.95 s	3	_		

^a Assignments were based on HMQC, and HMBC experiments.

The configuration of **1** was determined on the basis of the NOESY correlations [H-7/H-9b, H-8/H-9a, H-9b/H-7', H-7'/H-9'a] (Fig. 3) and positive optical rotation value ($[\alpha]_{D}^{25}$ +18.0, CH₃OH) in comparison to (+)-syringaresinol.¹⁴ Thus, the structure of **1** was established to be (+)-8'-hydroxybeechenol, and was named firmianol A.

Compound (2) was obtained as a colorless gum. The molecular formula of **2** was determined to be $C_{31}H_{35}O_{12}$ by the positive mode HR-FABMS data at m/z 623.2100 [M+Na]⁺ (calcd for $C_{31}H_{35}O_{12}Na$, 623.2099). Its NMR spectra were analogous to those of (+)-1-hydroxypinoresinol, which was isolated from *Saussurea pulchella*,¹⁵

Figure 2. Key COSY (bold line) and HMBC (arrow) correlations of 1 and 2.

Download English Version:

https://daneshyari.com/en/article/1370046

Download Persian Version:

https://daneshyari.com/article/1370046

Daneshyari.com