Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Discovery of highly potent dual EP₂ and EP₃ agonists with subtype selectivity

Akihiro Kinoshita^{a,*}, Masato Higashino^a, Yoshiyuki Aratani^a, Akito Kakuuchi^a, Hidekazu Matsuya^b, Kazuyuki Ohmoto^{a,*}

^a Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan ^b Department of Biology & Pharmacology, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan

ARTICLE INFO

Article history: Received 9 October 2015 Revised 28 November 2015 Accepted 11 December 2015 Available online 12 December 2015

Keywords: Prostaglandin EP₂ receptor EP₃ receptor Dual agonist Underactive bladder

ABSTRACT

The cyclic carbamate derivatives, $2-\{[2-((4S)-4-\{(1E,3R)-8-fluoro-3-hydroxy-4,4-dimethyl-1-octenyl]-2-oxo-1,3-oxazolidin-3-yl)ethyl]sulfanyl]-1,3-thiazole-4-carboxylic acid ($ **5** $) and <math>2-\{[2-((4S)-4-\{(1E,3R)-3-[1-(4-fluorobutyl)cyclobutyl]-3-hydroxy-1-propenyl]-2-oxo-1,3-oxazolidin-3-yl)ethyl]sulfanyl]-1,3-thiazole-4-carboxylic acid ($ **7**) were identified as the first potent dual EP₂ and EP₃ agonists with selectivity against the EP₁ and EP₄ subtypes. Compounds**5**and**7**demonstrated highly potent dual EP₂ and EP₃ agonist activity with EC₅₀ values of 10 nM or less. In addition, these compounds possess structural features distinct from natural prostaglandins, such as a cyclic carbamate moiety, a dimethyl or cyclobutyl group and a terminal fluorine atom.

© 2015 Elsevier Ltd. All rights reserved.

Prostanoid receptors are members of the G-protein coupled receptor superfamily. Receptors for prostaglandin E_2 (PGE₂) can be classified into four subtypes, EP₁, EP₂, EP₃, EP₄.¹ The diverse biological activities of PGE₂ are considered to be expressed as a hybrid of the activities mediated by these four EP receptor subtypes. Among them, the EP₂ receptor subtype^{2,3} induces smooth muscle relaxation,⁴ while the EP₃ receptor subtype inhibits smooth muscle relaxation.⁵

Underactive bladder (UAB) represents dysfunctional conditions of the bladder where patients are unable to produce an effective voiding contraction. The most common clinical signs are the elevation of post-void residual urine volume and the lowering of urine flow rate. These symptoms have a profoundly negative impact on quality of life. The primary drugs currently used for UAB are a cholinesterase inhibitor, distigmine bromide and a muscarinic receptor agonist, bethanechol chloride. The systemic cholinergic side effects of these two drugs negatively impact this therapy.

PGE₂ is considered to act on both bladder and urethral smooth muscle. It has been reported that PGE₂ prompts contraction of the isolated bladder and relaxation of the isolated urethra.⁶ In addition our pharmacological tests revealed that an EP₃ agonist contracts

* Corresponding authors. Tel.: +81 75 961 1151; fax: +81 75 962 9314.

the bladder and an EP_2 agonist relaxes the urethra (American Urology Association, 2015).

Our purpose was to develop PGE_2 analogs possessing highly potent dual EP_2 and EP_3 agonist activity with selectivity against the other two subtypes because a dual EP_2 and EP_3 agonist has the potential as an effective therapeutic addressing unmet medical needs for UAB.

So far, a potent dual EP_2 and EP_3 agonist with selectivity against the EP_1 and EP_4 receptor subtypes has not been identified. On the other hand, a dual EP_2 and EP_4 agonist with selectivity against

	EP_1	EP_2	EP ₃	EP_4
Mouse Binding Assay <i>K</i> i (nM)	>10 ⁴	9.3	540	0.41
Rat Functional Assay EC ₅₀ (nM)	-	90	-	0.79

Figure 1. EP₂ and EP₄ dual agonist 1.

E-mail addresses: ak.kinoshita@ono.co.jp (A. Kinoshita), k.ohmoto@ono.co.jp (K. Ohmoto).

Figure 2. Molecular design of γ -lactam PGE analogs.

Table 1

Activity profiles of γ -lactam derivatives

Compd	Human functional assay, EC ₅₀ ^a (nM)			
	EP ₂	EP ₃	EP ₄	
2	0.39	310	3.0	
3	0.91	8.4	4.2	

^a EC₅₀ values represent the mean of at least two experiments.

Table 2

Effect of the incorporation of oxygen atom into 5-membered ring

0 s ^{CO} 2 ^H	
X HC CH	3 : X = CH ₂
CH3 CH3	4 : X = O
Ōн	

Compd	Human functional assay, EC_{50}^{a} (nM)			
	EP ₂	EP ₃	EP ₄	
3	0.91	8.4	4.2	
4	7.4	50	320	

^a EC₅₀ values represent the mean of at least two experiments.

the EP₁ and EP₃ receptor subtypes was reported (compound **1** in Fig. 1).⁷

Our first molecular design for a dual EP_2 and EP_3 agonist is described in Figure 2. At first, an increase in affinity for the EP_3 receptor was required for compound **1**. The ω side chain of limaprost or gemeprost, which are prostaglandin E_1 (PGE₁) analogs in clinical use with high affinity for the EP_3 receptor, was introduced into **1**. The activity profiles of the resulting γ -lactam derivatives **2** and **3** are shown in Table 1. Of the two resulting compounds, *gem*dimethyl **3** demonstrated potent EP_3 agonist activity comparable

Table 3

Activity profiles of cyclic carbamate derivatives

Compd	R	Human functional assay, EC ₅₀ ª (nM)		tional (nM)	Human binding assay Ki ^a (nm)
		EP ₂	EP ₃	EP ₄	EP1
4	H ₃ C CH ₃ CH ₃	7.4	50	320	120
5	H ₃ C CH ₃ *	5.7	4.7	1220	431
6	.*СН3	2.9	3.9	73	220
7	*~~~F	2.9	10	195	1080
8	*OCH_3	18	25	705	>10,000
9	*~CH3	29	2606	745	8418
10	*	160	27	465	802
11	*	60	7.4	8390	1332
12	* CH3	21	18	240	89
13	* CH ₃ CH ₃	3700	6.7	4710	149

 $^{\rm a}~{\rm EC}_{50}$ or Ki values represent the mean of at least two experiments.

Table 4

Pharmaco	kinetics	profile	of 7	/ in	rats	

Iv dosing (0.01 mg/kg)		Oral dosing (1 n	Oral dosing (1 mg/kg)		
CL (mL/min/kg)	$T_{1/2}$ (h)	AUC (µg·h/mL)	F (%)		
9.5	4.4	0.041	2.5		

to its EP_2 and EP_4 agonist activity. Therefore, the second step was to optimize the 5-membered ring and the ω side chain of **3** toward reduction of EP_4 agonist activity.

According to the published data,⁸ lipophilicity at 5-membered ring seems to relate to EP_4 agonist activity. Therefore, the reduction of EP_4 agonist activity can be expected by the incorporation of oxygen atom into 5-membered ring. As shown in Table 2, the effect of modification of the 5-membered ring was investigated. The functional assay revealed that cyclic carbamate **4** showed a distinct decrease in EP_4 agonist activity versus its lactam counterpart **3** as expected.

Structure–activity relationships (SAR) of the cyclic carbamate derivatives are shown in Table 3. First, the effect of ω side chain was investigated. The functional assays for human EP₂–EP₄ receptor subtypes and the binding affinity for human EP₁ receptor subtype were performed to determine subtype selectivity. Surprisingly, the incorporation of a terminal fluorine atom into **4** enhanced EP₃ agonist activity while reducing EP₄ agonist activity.

Download English Version:

https://daneshyari.com/en/article/1370105

Download Persian Version:

https://daneshyari.com/article/1370105

Daneshyari.com