Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

7-Oxopyrrolopyridine-derived DPP4 inhibitors—mitigation of CYP and hERG liabilities via introduction of polar functionalities in the active site

Wei Wang^{a,*}, Pratik Devasthale^{a,*}, Aiying Wang^b, Tom Harrity^b, Don Egan^b, Nathan Morgan^b, Michael Cap^b, Aberra Fura^c, Herbert E. Klei^d, Kevin Kish^d, Carolyn Weigelt^e, Lucy Sun^f, Paul Levesque^f, Yi-Xin Li^g, Robert Zahler^a, Mark S. Kirby^b, Lawrence G. Hamann^{a,†}

^a Metabolic Diseases Chemistry, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, USA

^b Metabolic Diseases Biology, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, USA

^c Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, USA

^d Macromolecular Crystallography, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, USA

^e Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, USA

^f Discovery Toxicology, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, USA

^g Discovery Analytical Sciences, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, USA

ARTICLE INFO

Article history: Received 18 July 2011 Revised 16 September 2011 Accepted 19 September 2011 Available online 24 September 2011

Keywords: DPP4 inhibitors 7-Oxopyrrolopyridines Atropisomers Diabetes mellitus

ABSTRACT

Design, synthesis, and SAR of 7-oxopyrrolopyridine-derived DPP4 inhibitors are described. The preferred stereochemistry of these atropisomeric biaryl analogs has been identified as *Sa*. Compound (+)-**3t**, with a K_i against DPP4, DPP8, and DPP9 of 0.37 nM, 2.2, and 5.7 μ M, respectively, showed a significant improvement in insulin response after single doses of 3 and 10 μ mol/kg in *ob/ob* mice.

© 2011 Elsevier Ltd. All rights reserved.

In the past few years, inhibitors of dipeptidyl peptidase 4 (DPP4), a member of the serine protease super-family, have attracted considerable attention as novel therapeutic agents for the treatment of diabetes mellitus.¹ Sitagliptin (JanuviaTM),² saxagliptin³ (OnglyzaTM), vildagliptin (GalvusTM),⁴ and linagliptin (TradjentaTM)⁵ are approved agents for the treatment of type 2 diabetes, and alogliptin⁶ is in advanced stages of clinical trials. While many antidiabetic agents cause weight gain in patients and can cause hypoglycemia, DPP4 inhibitors have shown weight neutrality and are associated with a very low incidence of hypoglycemic events. A considerable amount of effort has thus been focused on the development of DPP4 inhibitors as a novel therapy for the treatment of diabetes.

Earlier work from our laboratories had identified potent and selective DPP4 inhibitors via exploitation of differences in the solvent-exposed region of the DPP4 and DPP8/9 enzymes.⁷ Herein, we describe a continuation of this approach through the discovery and development of pyrrolopyridines with the goal of mitigating

* Corresponding authors.

hERG and CYP liabilities while retaining potency and selectivity. While the significance of DPP selectivity remains a topic of debate in the literature, as a secondary goal, we sought to maximize selectivity for DPP4 versus DPP8/9 in this back-up series to mitigate against any potential issues. Monocyclic DPP4 inhibitors such as **1** have been reported in the literature.^{8a} Based on the X-ray co-crystal structure^{8b} of a close analog of **1** (not shown) bound to DPP4 and our internal structural studies⁷ on cores analogous to the proposed structures (**3–5**, **A**) in Figure 1, we hypothesized that introduction of nitrogen-containing heterocycles such as **3**, **4**, **5**, or **A**, would allow for facile functionalization and variation of R groups in the solvent-exposed region of the enzyme active site. The elaboration of series **A** will be the subject of a separate disclosure from our laboratories.

Synthesis of 7-oxopyrrolopyridine analogs (**3**) followed a literature protocol (Scheme 1), whereby benzylidines **7a** and **7b** were condensed with methyl or ethyl 3-aminocrotonate to give dihydropyridines, which were further oxidized with nitric acid to 7-oxopyrrolopyridine esters **8a** and **8b**, respectively, in good yield.⁹ Esters **8a** and **8b** were reduced to alcohols **9a** and **9b**, respectively, with LiBH₄, and then converted to the desired primary amines **3a** and **3b** by sequential treatment with mesyl chloride and 7 N NH₃/MeOH under microwave conditions.¹⁰

E-mail address: pratik.devasthale@bms.com (P. Devasthale).

[†] Current address: Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA.

(7-oxo-pyrrolopyridine) (pyrrolopyridines) (dihydropyrrolopyridines)(5-oxo-pyrrolopyridine)

Figure 1. Design of pyrrolopyridines.

Scheme 1. Reagents and conditions: (a) ethyl acrylate, EtOH, rt, 15 h; (b) diethyl oxalate, NaOEt, EtOH, reflux, 1 h; (c) 2,4-dichlorobenzaldehyde aq HCl/EtOH, reflux, 4 h; (d) ethyl 3-aminocrotonate, HOAc, reflux, 1.5 h; (e) 1 N HNO₃, reflux, 30 min; (f) LiBH₄, THF, cat MeOH, rt, 15 h; (g) MsCl, Et₃N, DCM, rt, 2 h; (h) 7 N NH₃ in MeOH, microwave, 100 °C, 5 min.

Scheme 2. Reagents and conditions: (a) LAH, THF, 0 °C to rt, 20 min; (b) MsCl, Et₃N, DCM, rt, 3 h; (c) 7 N NH₃ in MeOH, microwave, 100 °C, 15 min; (d) DIBAL-H, THF, rt, 3 h.

Synthesis of pyrrolopyridine **4a** and dihydropyrrolopyridine **5a** (Scheme 2), was low-yielding but expedient. LAH reduction of intermediate **8a** to the corresponding dihydropyrrolopyridine followed by the 2-step treatment with MsCl and NH₃/MeOH afforded primary amine **5a**, whereas use of a milder reducing agent (DI-BAL) afforded the pyrrole intermediate with the ester moiety intact. Subsequent treatment with LAH reduced the ester to the alcohol, which was then transformed to pyrrolopyridine **4a** following the usual sequence in 9% overall yield.

We initially sought to identify the most suitable of the three bicyclic cores, represented by compounds **3a**, **4a**, and **5a**, for further

SAR elaboration. All three compounds showed moderately potent DPP4 inhibition, and hence could serve as good starting points (Table 1). Compound **4a** was chemically unstable and hence was not progressed further.

Due to compound **3a**'s relatively superior PK properties and CYP profile, 7-oxo-pyrrolopyridine was chosen over **5a** as the bicyclic core for SAR optimization, despite **5a**'s apparent higher peptidase selectivity. All three compounds displayed CYP3A4, hERG and PXR liabilities.

We began by exploring aryl substituents on the lactam nitrogen, taking advantage of Chan-Lam's versatile copper-mediated N-arylaDownload English Version:

https://daneshyari.com/en/article/1370230

Download Persian Version:

https://daneshyari.com/article/1370230

Daneshyari.com