Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Mepyramine–JNJ7777120-hybrid compounds show high affinity to hH₁R, but low affinity to hH₄R

Eva Wagner^a, Hans-Joachim Wittmann^b, Sigurd Elz^a, Andrea Strasser^{c,*}

^a Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany

^b Faculty of Chemistry and Pharmacy, University of Regensburg, D-93040 Regensburg, Germany

^c Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany

ARTICLE INFO

Article history: Received 15 June 2011 Revised 31 August 2011 Accepted 1 September 2011 Available online 7 September 2011

Keywords: Histamine H₁ receptor Histamine H₄ receptor Mepyramine JNJ777120 Hybrid compounds Molecular dynamics

ABSTRACT

In literature, a synergism between histamine H_1 and H_4 receptor is discussed. Furthermore, it was shown, that the combined application of mepyramine, a H_1 antagonist and JNJ7777120, a H_4 receptor ligand leads to a synergistic effect in the acute murine asthma model. Thus, the aim of this study was to develop new hybrid ligands, containing one H_1 and one H_4 pharmacophor, connected by an appropriate spacer, in order to address both, H_1R and H_4R . Within this study, we synthesized nine hybrid compounds, which were pharmacologically characterized at hH_1R and hH_4R . The new compounds revealed (high) affinity to hH_1R , but showed only low affinity to hH_4R . Additionally, we performed molecular dynamic studies for some selected compounds at hH_1R , in order to obtain information about the binding mode of these compounds on molecular level.

© 2011 Elsevier Ltd. All rights reserved.

Histamine H₁ receptor antagonists are used in general for the treatment of allergic reactions, whereas the histamine H₄ receptor is suggested to be involved in allergic diseases, like conjunctivitis, rhinitis or bronichal asthma as well as in atopic dermatitis and pruritus.^{1–4} Mepyramine **1** (Scheme 1) is a prominent H₁R antagonist, whereas JNJ7777120 2 (Scheme 1) shows high affinity to the $H_4 R.^4$ In 2003 [N]7777120 **2** was described as a potent and selective H_4 antagonist, which has meanwhile established to a H_4R standard antagonist.⁵ Further studies revealed that JNJ7777120 acts as inverse agonist at hH_4R but as partial agonist at mH_4R .⁶ Recently, it was shown experimentally, that the combined application of mepyramine 1 and INI77771202 in the acute murine asthma model leads to a synergistic effect.⁷ Thus, the development of combined H_1/H_4 -receptor ligands may be a worthwhile goal for treatment of allergic reactions,¹ since differences in bioavailability are expected if two drugs are administered. This is not the case, if H₁R and H₄R can be addressed with only one drug. Furthermore, ligands addressing both H₁R and H₄R are important pharmacological tools to get deeper insights with regard to ligand binding and selectivity on molecular level. One strategy for development of dual H₁/H₄-receptor ligands is the connection of one H₁- and one H₄-pharmacophor by a spacer. This concept was already applied by Schunack with regard to H₁R and H₂R.^{8,9} Since the combined application of mepyramine **1** and JNJ7777120 **2** lead to the synergistic effect in the acute murine asthma model,⁷ the aim of this study was to synthesize and pharmacologically characterize a number of compounds, combining mepyramine as H₁- and JNJ7777120 as H₄-pharmacophor.

The hybrid ligands **16–21** were obtained as described (Scheme 2). The structures of compounds **26**, **38** and **45** are presented in Scheme 3, whereas the strategy with regard to synthesis can be found in the supplementary material. Further details with regard to synthesis, as well as analytics of all hybrid compounds are given in the supplementary material.

The synthesized compounds were routinely investigated in competition binding assays. In case of hH₁R, Sf9 cell membranes, coexpressing hH₁R and RGS4 were used for competition binding assays in presence of 5 nM [³H]mepyramine.¹⁰ In case of hH₄R, Sf9 cell membranes, coexpressing hH₄R-RGS19, $G\alpha_{i2}$ and $G\beta_1\gamma_2$ were used for competition binding assays in presence of 10 nM [³H]histamine.¹¹ Furthermore, some selected compounds were analyzed at hH₄R with the GTP γ S-assay in order to determine the efficacy.¹² Additionally, most of the new compounds were tested routinely on isolated guinea-pig ileum.¹³ Since only H₁R, but not H₄R is expressed on ileum, in organ pharmacology, assays at guinea-pig ileum are well established in order to study the affinity and functionality at gpH₁R. The histamine-induced contraction of the guinea-pig ileum is measured in presence and absence of an antagonist.¹³

Since the new hybrid compounds showed affinity to H_1R , but did not act as (partial) agonists at H_1R , a model of hH_1R in the inactive conformation was generated by homology modelling, based on

^{*} Corresponding author. Tel.: +49 941 943 4821; fax: +49 941 943 4820. *E-mail address*: andrea.strasser@chemie.uni-regensburg.de (A. Strasser).

astemizole, 4

Scheme 1. Structures of H₁ (mepyramine, **1**; diphenhydramine, **3**; astemizole, **4**) and H₄ (JNJ7777120, **2**; JNJ-derivative, **5**; JNJ-derivative, **6**) receptor ligands.

the crystal structure 2RH1,¹⁴ analogue, as already described.¹⁵ A comparison of our H₁R homology model, refined by molecular dynamic simulations, with the recently published hH₁R crystal¹⁶ showed no significant differences. The compounds **16**, **19** and **38** were docked manually into the binding pocket of hH₁R using the software package SYBYL 7.0 (Tripos Inc.). Molecular dynamic simulations, using the software GROMACS 4.0.2 (http://www.gromacs.org), were performed, as already described.¹⁰ Ligand parameterization was obtained from the PRODRG server (http:// davapc1.bioch.dundee.ac.uk/prodrg/). For both compounds a 6 ns productive phase in molecular dynamic simulations was performed subsequent to a 1 ns equilibration phase.

The pharmacological and modeling data of reference compounds and the new hybrid compounds are given in Tables 1–4. For compounds **16** and **19**, the experimental pharmacological data are shown in Figure 1.

Compared to mepyramine, the affinity of compounds 16-18 is significantly reduced of about 1.5-2 log units at hH₁R. The introduction of one chlorine atom in the indole moiety 17 leads to a slight decrease in affinity to hH₁R, compared to 16. The exchange of the indole moiety 16 into a benzimidazole 18 leads to a decrease in affinity at hH₁R. For compound **19**, an affinity comparable to that of mepyramine $\mathbf{1}$ at hH_1R could be observed. The introduction of one chlorine atom on the corresponding position in the JNJ7777120 partial structure 20 leads to a significant decrease in affinity at hH₁R, compared to **19**. In compounds **16–18**, the basic nitrogen atom is embedded in a piperazine moiety, which shows a higher rigidity than an ethylene spacer. This more voluminous piperazine mojety is suggested to disturb the electrostatic interaction between the positively charged amine and Asp^{3.32}, leading to a significantly decreased affinity. Based on the molecular dynamic studies, a mean coulomb energy (short range) between 16 and hH_1R of about -157 ± 1 kJ/mol was detected (Fig. 2). In contrast, a coulomb energy (short range) of -197 ± 1 kJ/mol was detected between **19** and hH₁R (Fig. 2, Table 2). Both interaction energies are, according to a t-test, significant different to each other (p <0.0001). In contrast, there is no significant difference with regard

to the Lennard-Jones energy (short-range) interaction energies between **16** ($-252 \pm 1 \text{ kJ/mol}$) or **19** ($-253 \pm 1 \text{ kJ/mol}$) and hH₁R (Table 2). Thus, the dynamic studies support the hypothesis that the piperazine moiety disturbs the electrostatic interaction between 16 and hH₁R. This difference in the short range coulomb interaction is reflected by the experimentally determined pK_i values of **16** and **19** at hH₁R (Fig. 1A). However, during the molecular dynamic simulations, a stable hydrogen bond interaction could be detected between the carbonyl moiety of **16** and Asn^{2.61} (Fig. 2). Additionally, an aromatic interaction between the indole moietv of **16** and Tyr^{2.64} was observed during the simulation (Fig. 2). In compound 19, the amino moiety, suggested to interact with Asp^{3.32} is flexible, analogous to mepyramine itself and in contrast to compounds 16-18. Thus, the interaction between the amine moiety and Asp^{3.32} can be established well. This is also confirmed by the stronger electrostatic interaction between hH₁R and **19**. compared to **16** (Fig. 2). However, the elongation of mepvramine by the JNJ7777120 partial structure did not lead to an increased affinity at hH₁R, compared to mepyramine **1**. Since there is a significant difference in affinity of **19** and **20** at hH₁R, it may be suggested, that the additional [N]7777120 partial structure interacts specifically with the hH₁R. A stable hydrogen bond was detected during the molecular dynamic simulation between the carbonyl moiety of 19 and Thr182 (E2-loop) (Fig. 2). The exchange of the piperazine moiety by a more flexible aminopyrrolidine moiety 26 leads only to a slight decrease in affinity at hH₁R, compared to 16. The diphenhydramine-JNJ-hybrid compound 21, analogue to the mepyramine-JNJ-hybrid compound 16 leads to a decrease in affinity of about 1 log unit at hH₁R, compared to diphenhydramine 3. For the analogoue astemizole-JNJ-hybrid compound 45, only a slight decrease in affinity was observed at hH₁R, compared to astemizole 4. Thus, the introduction of a JNJ partial structure into mepyramine and diphenhydramine leads to a stronger decrease in affinity, compared to the corresponding H₁ antagonists. In contrast, the INI-astemizole hybrid shows an affinity in the same range as found for astemizole (Fig. 3). Compound 38 shows a significant decrease in affinity at hH₁R, compared to **19**. In **38**, the INI partial structure is connected to mepvramine via the indole moiety, whereas in 19, the [N] partial structure is connected via the piperazine moiety to mepyramine. Thus, this switch is suggested to be responsible for the observed differences in affinity. Compound 38 was obtained experimentally as racemate, but in molecular modelling, both enantiomers were analyzed (Fig. 2). Molecular dynamic simulations revealed a stable binding mode for both enantiomers. The mepyramine partial structure (for both enantiomers) is located in the same part of the binding pocket, as already described for 16 or 19 and the positively charged amino moiety of 38 (both enantiomers) interacts electrostatically with Asp^{3.32}. Molecular dynamic simulations revealed a stable hydrogen bond interaction between the carbonyl moiety of 38 (R- and S-configuration) and Trp^{7.40}. For **38** (S-configuration), the carbonyl moiety establishes an additional hydrogen bond to Asn^{2.61}. Aromatic interactions between the indole moiety of 38 and the receptor were not detected. However, both enantiomers showed slight differences in conformation in its receptor bound state. Theses differences are reflected in the interaction energy between 38 and hH₁R. Between the R enantiomer of **38** and hH₁R, a coulomb energy (short range) of $-166 \pm 3 \text{ kJ/mol}$ and a Lennard–Jones energy (short range) of -285 ± 2 kI/mol was observed. In contrast, between the S enantiomer of **38** and hH₁R, a coulomb energy (short range) of $-241 \pm 2 \text{ kJ/mol}$ and a Lennard–Jones (short range) of -284 ± 1 kJ/mol was observed (Table 2).

As shown in Table 2, a comparison of the calculated ligandreceptor-interaction energies (C+LJ LR, Table 2) does not reflect the observed pK_i values of **16**, **19** and **38**. However, this observation can be explained: During molecular dynamic simulations, the Download English Version:

https://daneshyari.com/en/article/1370399

Download Persian Version:

https://daneshyari.com/article/1370399

Daneshyari.com